Elastic – Plastic Solids

  • George J. Dvorak
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 186)

Abstract

This chapter provides a short introduction to constitutive relations for materials that exhibit incremental elastic-plastic deformation in response to an applied loading path which extends beyond their initial yield surface. In a certain sense, it is analogous to  Chap. 2 on Anisotropic Elastic Solids, with which it shares the results pertaining to isotropic elasticity. Moreover, the instantaneous tangential stiffness or compliance matrices may have as many as 21 nonzero coefficients, as in triclinic elastic materials. In preparation  Chap. 12, attention is focused on those parts of incremental plasticity theory that are useful in modeling of metal matrix composites.

Keywords

Plastic Strain Yield Surface Strain Increment Flow Rule Kinematic Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armstrong, P. J., & Frederick, C. O. (1966). A mathematical representation of the multiaxial Bauschinger effect. Report RD/B/N 731, C.E.G.B.Google Scholar
  2. Belytschko, T., Liu, W. K., & Moran, B. (2000). Nonlinear finite elements for continua and structures. Chichester: Wiley.MATHGoogle Scholar
  3. Bridgman, P. W. (1952). Studies in large plastic flow and fracture. New York: McGraw-Hill.MATHGoogle Scholar
  4. Chaboche, J.-L. (1989). Constitutive equations for cyclic plasticity and visco-plasticity. International Journal of Plasticity, 5, 274–302.CrossRefGoogle Scholar
  5. Chan, K. S., Lindholm, U. S., & Bodner, S. R. (1988). Constitutive modeling for isotropic materials. NASA CR 182132.Google Scholar
  6. Dafalias, Y. F., & Popov, E. P. (1976). Plastic internal variables formalism of cyclic plasticity. Journal of Applied Mechanics, 98, 645–651.CrossRefGoogle Scholar
  7. Dawson, P. R. (2000). Computational crystal plasticity. International Journal of Solids and Structures, 37, 115–130.CrossRefMATHGoogle Scholar
  8. Drucker, D. C. (1967). Introduction to mechanics of deformable solids. New York: McGraw-Hill Book Co.Google Scholar
  9. Dvorak, G. J., Bahei-El-Din, Y. A., Macheret, Y., & Liu, C. H. (1988). An experimental study of elastic-plastic behavior of fibrous boron-aluminum composites. Journal of the Mechanics and Physics of Solids, 36, 665–687.CrossRefGoogle Scholar
  10. Ellyin, F. (1989). An anisotropic hardening rule for elastoplastic solids based on experimental observations. ASME Journal of Applied Mechanics, 56, 489–507.CrossRefGoogle Scholar
  11. Freed, A. D., & Walker, K. P. (1993). Viscoplasticity with creep and plasticity bounds. International Journal of Plasticity, 9, 213–242.CrossRefMATHGoogle Scholar
  12. Freed, A. D., Chaboche, J.-L., & Walker, K. P. (1991). A viscoplastic theory with thermodynamic considerations. Acta Mechanica, 90, 155–174.MathSciNetCrossRefMATHGoogle Scholar
  13. Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.CrossRefGoogle Scholar
  14. Hill, R. (1950). The mathematical theory of plasticity. New York: Oxford University Press.MATHGoogle Scholar
  15. Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15, 79–95.CrossRefGoogle Scholar
  16. Hughes, T. J. R., & Pister, K. S. (1978). Consistent linearization in mechanics of solids and structures. Computers and Structures, 9, 391–397.MathSciNetCrossRefGoogle Scholar
  17. Hughes, T. J. R., & Taylor, R. L. (1978). Unconditionally stable algorithms for quasistatic elasto/viscoplastic finite element analysis. Computers and Structures, 8, 169–173.CrossRefMATHGoogle Scholar
  18. Hutchinson, J. W. (2000). Plasticity at the micron scale. International Journal of Solids and Structures, 37, 25–238.MathSciNetGoogle Scholar
  19. Jirasek, M., & Bazant, Z. P. (2002). Inelastic analysis of structures. Chichester: Wiley.Google Scholar
  20. Krempl, E. (2000). Visoplastic models for high temperature applications. International Journal of Solids and Structures, 37, 279–291.CrossRefMATHGoogle Scholar
  21. Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceeidngs of the second Berkeley symposium on mathematical statistics and probability (pp. 481–192). Berkeley: University of California Press.Google Scholar
  22. Lemaitre, J., & Chaboche, J.-L. (1995). Mechanics of solid materials. Cambridge: Cambridge University Press.Google Scholar
  23. Lindholm, U. S., Chan, K. S., Bodner, S. R., Walker, K. P., & Cassenti, B. N. (1984). Constitutive modeling for isotropic materials. NASA Lewis Research Center, NAS3-23925.Google Scholar
  24. Lubliner, J. (1990). Plasticity theory. New York: Macmillan Publication & Co.MATHGoogle Scholar
  25. Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.CrossRefGoogle Scholar
  26. Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.CrossRefMATHGoogle Scholar
  27. Nigam, H., Dvorak, G. J., & Bahei-El-Din, Y. A. (1994). An experimental investigation of elastic-plastic behavior of a fibrous boron-aluminum composite: I. Matrix-dominated mode. II. Fiber dominated mode. International Journal of Plasticity, 10, 23–62.CrossRefGoogle Scholar
  28. Phillips, A. (1986). A review of quasistatic experimental plasticity and viscoplasticity. International Journal of Plasticity, 2, 315–328.CrossRefGoogle Scholar
  29. Phillips, A., & Lee, C. W. (1979). Yield surfaces and loading surfaces: Experiments and recommendations. International Journal of Solids and Structures, 15, 715–729.CrossRefGoogle Scholar
  30. Phillips, A., Liu, C. S., & Justusson, J. W. (1972). An experimental investigation of yield surfaces at elevated temperatures. Acta Mechanica, 14, 119–146.CrossRefGoogle Scholar
  31. Phillips, A., Ricciuti, M., & Tang, J. L. (1974). Some new observations on yield surfaces. Acta Mechanica, 20, 23–39.CrossRefGoogle Scholar
  32. Ponte Castaneda, P. (1996). A second-order theory for nonlinear composite materials. Computes Rendus de I’Academie des Sciences Paris, 322(Série II b), 3–10.MATHGoogle Scholar
  33. Prager, W. (1956). A new method of analyzing stresses and strains in work-hardening plastic solids. ASME Journal of Applied Mechanics, 23, 493–496.MathSciNetMATHGoogle Scholar
  34. Shield, R. T., & Ziegler, H. (1958). On Prager’s hardening rule. Zeitschrift für Angewandte Mathematik und Physik, 9, 260–276.MathSciNetCrossRefGoogle Scholar
  35. Simo, J. C., & Hughes, J. T. R. (1998). Computational inelasticity. New York: Springer.MATHGoogle Scholar
  36. Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press.Google Scholar
  37. von Mises, R. (1928). Mechanik der plasticschen Formanderung in Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik, 8, 161–185.CrossRefMATHGoogle Scholar
  38. Zaverl, J. R., & Lee, D. (1978). Constitutive relations for nuclear reactor core materials. Journal of Nuclear Materials, 75, 14.CrossRefGoogle Scholar
  39. Ziegler, H. (1959). A modification of Prager’s hardening rule. Quarterly of Applied Mathematics, 17, 55–65.MathSciNetMATHGoogle Scholar
  40. McDowell, D. L. (2000). Modeling and experiments in plasticity. International Journal of Solids and Structures, 37, 293–309.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  • George J. Dvorak
    • 1
  1. 1.Mechanical, Aeronautical and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations