Symmetric Laminates

  • George J. Dvorak
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 186)

Abstract

Laminated plates and shells are made by laying up and co-curing unidirectionally reinforced fibrous composite plies or laminae, which have different in-plane orientation and are ordered in a certain stacking sequence. Ply thicknesses are material system specific and their final magnitudes may depend on the fabrication procedure. Most polymer matrix composites are made using pre-impregnated or prepreg tapes or sheets, reinforced by tows consisting of many small diameter (<20 μm) fibers, which typically form ∼0.127 mm (0.005 in.) thick plies. Metal matrix laminates are often reinforced by monolayers of large diameter (150 μm) filaments, which yield ply thicknesses of ~0.200 mm (0.008 in.). Therefore, many plies are required to build up section thicknesses required in larger structures.

Keywords

Laminate Plate Crack Density Transverse Crack Prestress Force Symmetric Laminate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alberski, T.C. (2000). Ph.D. Dissertation, Rensselaer Polytechnic Institute.Google Scholar
  2. Ambartsumyan, S. A. (1970). Theory of anisotropic plates. Strength, stability, vibration (T. Cheron, Trans.). Stamford: Technomic Publishing.Google Scholar
  3. Bahei-El-Din, Y. A., Dvorak, G. J., & Wu, J.-F. (1992). Dimensional stability of metal-matrix laminates. Composites Science and Technology, 43, 207–219.CrossRefGoogle Scholar
  4. Christensen, R. M., & DeTeresa, S. J. (1992). Elimination/minimization of edge-induced stress singularities in fiber composite laminates. International Journal of Solids and Structures, 29, 1221–1231.CrossRefMATHGoogle Scholar
  5. Christensen, R. M., & Zywicz, E. (1990). A three-dimensional constitutive theory for fiber composite laminated media. ASME Journal of Applied Mechanics, 57, 948–955.CrossRefGoogle Scholar
  6. Christensen, R. M. (1998) Two theoretical elasticity micromechanics models. J. Elasticity, 50, 15–25.CrossRefMATHGoogle Scholar
  7. Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). New York: Oxford University Press.Google Scholar
  8. Dvorak, G. J., Prochazka, P., & Srinivas, M. V. (1999). Design and fabrication of submerged cylindrical laminates I. International Journal of Solids and Structures, 36, 3917–3943.CrossRefMATHGoogle Scholar
  9. Eshelby, J. D., Read, W. T., & Shockley, W. (1953). Anisotropic elasticity with applications to dislocation theory. Acta Metallurgica, 1, 251–259.CrossRefGoogle Scholar
  10. Flanagan, G. (1994). An efficient stress function approximation for the free-edge stresses in laminates. International Journal of Solids and Structures, 31, 941–952.CrossRefMATHGoogle Scholar
  11. Hayashi, T. (1967). Analytical study of interlaminar shear stresses in a laminate composite plate. Transactions. Japan Society for Aeronautical and Space Sciences, 10, 43–48.Google Scholar
  12. Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley.Google Scholar
  13. Kassapoglou, C., & Lagace, P. A. (1986). An efficient method for the calculation of interlaminar stresses in composite materials. ASME Journal of Applied Mechanics, 53, 744–750.CrossRefMATHGoogle Scholar
  14. Kim, T., & Atluri, S. N. (1995a). Analysis of edge stresses in composite laminates under combined thermo-mechanical loading, using a complementary energy approach. Computational Mechanics, 16, 83–97.CrossRefMATHGoogle Scholar
  15. Kim, T., & Atluri, S. N. (1995b). Optimal through-thickness temperature gradients for control of interlaminar stresses in composites. AIAA Journal, 33, 730–738.CrossRefMATHGoogle Scholar
  16. Kovarik, V. (1989). Stresses in layered shells of revolution. Prague: Academia.MATHGoogle Scholar
  17. Lekhnitskii, S. G. (1968). Anisotropic plates (Translated from 2nd Russian edition by S. W. Tsai, & T. Cheron, Gordon and Breach).Google Scholar
  18. Librescu, L. (1975). Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures. Leyden: Noordhoff.MATHGoogle Scholar
  19. Noor, A. K., & Burton, W. S. (1989). Assessment of shear deformation theories for multilayer composite plates. Applied Mechanics Reviews, 42, 1–13.CrossRefGoogle Scholar
  20. Ochoa, O. O., & Reddy, J. N. (1992). Finite element analysis of composite laminates. Dordrecht: Kluwer.CrossRefGoogle Scholar
  21. Pagano, N. J. (1969). Exact solutions for composite laminates in cylindrical bending. Journal of Composite Materials, 3, 398–411.CrossRefGoogle Scholar
  22. Pagano, N. J. (1978a). Stress fields in composite laminates. International Journal of Solids and Structures, 14, 385–400.CrossRefMATHGoogle Scholar
  23. Pagano, N. J. (1978b). Free edge stress fields in composite laminates. International Journal of Solids and Structures, 14, 401–406.CrossRefMATHGoogle Scholar
  24. Pagano, N. J., & Pipes, R. B. (1970). Interlaminar stresses in composite laminates under uniform axial extension. Journal of Composite Materials, 4, 538–548.Google Scholar
  25. Panc, V. (1975). Theories of elastic plates. Leyden: Noordhoff.CrossRefMATHGoogle Scholar
  26. Reddy, J. N. (1997). Mechanics of laminated composite plates: Theory and analysis. New York: CRC Press.MATHGoogle Scholar
  27. Reissner, E. (1950). On a variational theorem in elasticity. Journal of Mathematics and Physics, 29, 90–95.MathSciNetMATHGoogle Scholar
  28. Rose, C. A., & Herakovich, C. T. (1993). An approximate solution for interlaminar stresses in composite laminates. Composites Engineering, 3, 271–285.CrossRefGoogle Scholar
  29. Stroh, A. N. (1958). Dislocations and cracks in anisotropic elasticity. Philosophical Magazine, 3, 625–646.MathSciNetCrossRefMATHGoogle Scholar
  30. Suvorov, A. P., & Dvorak, G. J. (2001). Optimized fiber prestress for reduction of free edge stresses in composite laminates. International Journal of Solids and Structures, 38, 6751–6786.CrossRefMATHGoogle Scholar
  31. Ting, T. C. T. (1996). Anisotropic elasticity: Theory and applications. Oxford: Oxford University Press.MATHGoogle Scholar
  32. Vel, S. S., & Batra, R. C. (2000). The generalized plane strain deformations of thick anisotropic composite laminated plates. International Journal of Solids and Structures, 37, 715–733.CrossRefMATHGoogle Scholar
  33. Wang, S. S., & Choi, I. (1982). Boundary-layer effects in composite laminates: Part I – Free-edge stress singularities. ASME Journal of Applied Mechanics, 49, 541–548.CrossRefMATHGoogle Scholar
  34. Whitney, J. M. (1987). Structural analysis of laminated anisotropic plates. Lancaster: Technomic Publications Co.Google Scholar
  35. Yin, W. L. (1994a). Free-edge effects in anisotropic laminates under extension, bending and twisting, Part I: A stress-function-based variational approach. Journal of Applied Mechanics, 61, 410–415.CrossRefMATHGoogle Scholar
  36. Yin, W. L. (1994b). Free-edge effects in anisotropic laminates under extension, bending and twisting, Part II: Eigenfunction analysis and the results for symmetric laminates. Journal of Applied Mechanics, 61, 416–421.CrossRefGoogle Scholar
  37. Bailey, J. E., Curtis, P. T., & Parvizi, A. (1979). On the transverse cracking and longitudinal splitting behaviour of glass and carbon fibre reinforced epoxy cross ply laminates and the effect of Poisson and thermally generated strain. Proceedings of the Royal Society of London, A366, 599.Google Scholar
  38. Budiansky, B., & Fleck, N. A. (1993). Compressive failure of fiber composites. Journal of the Mechanics and Physics of Solids, 41, 183–211.CrossRefGoogle Scholar
  39. Budiansky, B., & Fleck, N. A. (1994). Compressive kinking of fiber composites A topic review. Applied Mechanics Reviews, 47(6), Part 2, S246–S250.Google Scholar
  40. Chen, W., & Ravichandran, G. (1996). Static and dynamic compressive behavior of aluminum nitride under moderate confinement. Journal of the American Ceramic Society, 79, 579–584.CrossRefGoogle Scholar
  41. Chen, W., & Ravichandran, G. (1997). Dynamic compressive behavior of a glass ceramic under lateral confinement. Journal of the Mechanics and Physics of Solids, 45, 1303–1328.CrossRefGoogle Scholar
  42. Chen, W., & Ravichandran, G. (2000). Failure mode transition in ceramics under dynamic multiaxial compression. International Journal of Fracture, 101(1–2), 141–159.CrossRefGoogle Scholar
  43. Chen, W. W., Rajendran, A. M., Song, B., & Nie, Xu. (2007). Dynamic fracture of ceramics in armor applications. Journal of the American Ceramic Society, 90, 1005–1018.CrossRefGoogle Scholar
  44. Christensen, R. M. (2012). www.FailureCriteria.com
  45. Christensen, R. M., & DeTeresa, S. J. (1997). The kink band mechanism for the compressive failure of fiber composite materials. ASME Journal of Applied Mechanics, 64, 1–6.CrossRefMATHGoogle Scholar
  46. Cook, T. S., & Erdogan, F. (1972). Stresses in bonded materials with a crack perpendicular to the interface. International Journal of Engineering Science, 10, 677–697.CrossRefMATHGoogle Scholar
  47. Crossman, F. W., & Wang, A. S. D. (1982). The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates. In Damage in Composite Materials (ASTM STP 775, p. 118). West Conshohocken: American Society for Testing and Materials.Google Scholar
  48. Delale, F., & Erdogan, F. (1979). Bonded orthotropic strips with cracks. International Journal of Fracture, 15, 343–364.Google Scholar
  49. Dvorak, G. J., & Prochazka, P. (1996). Thick-walled composite cylinders with optimal fiber prestress. Composites, 27B, 643–649.Google Scholar
  50. Dvorak, G. J., & Suvorov, A. (2000). Effect of fiber prestress on residual stresses and onset of damage in symmetric laminates. Composites Science and Technology, 60, 1929–1939.CrossRefGoogle Scholar
  51. Fleck, N. A. (1997). Compressive failure of fiber composites. In J. W. Hutchinson & T. Y. Wu (Eds.), Advances in applied mechanics (Vol. 33). New York: Academic.Google Scholar
  52. Garrett, K. W., & Bailey, J. E. (1977). Multiple transverse fracture in 90 ° cross-ply laminates of glass fibre-reinforced polyester. Journal of Materials Science, 12, 157–168.CrossRefGoogle Scholar
  53. Gooch, W. (2010). 2011 overview of the development of ceramic armor technology: Past, present and future. 35th International Conference on Advanced Ceramics & Composites, American Ceramic Society.Google Scholar
  54. Gudmundson, P., & Zhang, W. (1993). An analytical model for thermoelastic properties of composite laminates containing transverse cracks. International Journal of Solids and Structures, 30, 3211–3231.CrossRefMATHGoogle Scholar
  55. Gupta, V., Argon, A. S., & Suo, Z. (1992). Crack deflection at an interface between two orthotropic media. ASME Journal of Applied Mechanics, 59, S79–S87.CrossRefGoogle Scholar
  56. Hashin, Z. (1985). Analysis of cracked laminates: A variational approach. Mechanics of Materials, 4, 121–136.CrossRefGoogle Scholar
  57. Hauver, G. E., Rapacki, E. J., Netherwood, P. H., & Benck, R. F. (2005). Interface defeat of long-rod projectiles by ceramic armor (Report ARL-TR-3950). U.S. Army Research Laboratory.Google Scholar
  58. Highsmith, A. L., & Reifsnider, K. L. (1982). Stiffness reduction mechanisms in composite laminates. In Damage in Composite Materials (ASTM STP 775, pp. 103–117). West Conshohocken: American Society for Testing and Materials.Google Scholar
  59. Ho, S., & Suo, Z. (1993). Tunneling cracks in constrained layers. ASME Journal of Applied Mechanics, 69, 890–894.CrossRefGoogle Scholar
  60. Kardomateas, G. A., & Philobox, M. S. (1995). Buckling of thick orthotropic cylindrical shells under combined external pressure and axial compression. AIAA Journal, 33, 1946–1953.CrossRefMATHGoogle Scholar
  61. Kyriakides, S., Arseculeratne, R., Perry, E. J., & Liechti, K. M. (1995). On the compressive failure of fiber reinforced composites. International Journal of Solids and Structures, 32, 689–738.CrossRefMATHGoogle Scholar
  62. Laws, N., & Dvorak, G. J. (1988). Progressive transverse cracking in composite laminates. Journal of Composite Materials, 22, 900–916.CrossRefGoogle Scholar
  63. Lu, M.-C., & Erdogan, F. (1983). Stress intensity factors in two bonded elastic layers containing cracks perpendicular to an interface, I. Analysis, II. Solution and results. Engineering Fracture Mechanics, 18, 491–528.CrossRefGoogle Scholar
  64. Luo, J., & Sun, C. T. (1991). Global-local methods for thermoelastic analysis of thick fiber-wound cylinders. Journal of Composite Materials, 25, 453–468.Google Scholar
  65. Malaise, F., Tranchet, J.-Y., & Collombet, F. (2000). Effects of dynamic confinement on the penetration resistance of ceramics against long rods. In M. D. Furnish, L. C. Chhabildas, & R. S. Hixson (Eds.), Shock compression of condensed matter-1999 (pp. 1121–1140). New York: AP Press.Google Scholar
  66. McCartney, L. N., & Schoeppner, G. N. (2002). Predicting the effect of non-uniform ply cracking on the thermoelastic properties of cross-ply laminates. Composites Science and Technology, 62, 1841–1856.CrossRefGoogle Scholar
  67. Nairn, J. A. (2006). On the calculation of energy release rates for cracked laminates with residual stress. International Journal of Fracture, 139, 267–293.CrossRefMATHGoogle Scholar
  68. Praveen, G. N., & Reddy, J. N. (1998). Transverse matrix cracks in cross-ply laminates: Stress transfer, stiffness reduction and crack opening profiles. Acta Mechanica, 130, 227–248.CrossRefMATHGoogle Scholar
  69. Sarva, S., Nemat-Nasser, S., McGee, J., & Isaacs, J. (2007). The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles. International Journal of Impact Engineering, 34, 277–302.CrossRefGoogle Scholar
  70. Srinivas, M. V., Dvorak, G. J., & Prochazka, P. (1999). Design and fabrication of submerged cylindrical laminates-II: Effect of fiber prestress. International Journal of Solids and Structures, 36(26), 3945–3976.CrossRefMATHGoogle Scholar
  71. Sun, C. T., & Li, S. (1988). Three-dimensional effective elastic constants for thick laminates. Journal of Composite Materials, 22, 629–639.CrossRefGoogle Scholar
  72. Suvorov, A., & Dvorak, G. J. (2001a). Optimized fiber prestress for reduction of free edge stresses in composite laminates. International Journal of Solids and Structures, 38, 6751–6786.CrossRefMATHGoogle Scholar
  73. Suvorov, A., & Dvorak, G. J. (2001b). Optimal design of prestressed laminate/ceramic plate assemblies. Meccanica, 36, 87–109.CrossRefMATHGoogle Scholar
  74. Suvorov, A., & Dvorak, G. J. (2002). Stress relaxation in prestressed composite laminates. ASME Journal of Applied Mechanics, 69, 459–469.CrossRefMATHGoogle Scholar
  75. Wang, A. D. S. (1984). Fracture mechanics of sublaminate cracks in composite materials. Composites Technology Review, 6, 45.CrossRefGoogle Scholar
  76. Zhang, D., Ye, J., & Lam, D. (2007). Properties degradation induced by transverse cracks in general symmetric laminates. International Journal of Solids and Structures, 44, 5499–5517.CrossRefMATHGoogle Scholar
  77. Christensen, R. M. (1998). Two theoretical elasticity micromechanics models. Journal of Elasticity, 50, 15–25.CrossRefMATHGoogle Scholar
  78. Dvorak, G. J., & Teply, J. (1985). Periodic hexagonal array models for plasticity analysis of composite materials. In A. Sawczuk & V. Bianchi (Eds.), Plasticity today: Modeling, methods and applications (W. Olszak memorial volume, pp. 623–642). Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
  79. Dvorak, G. J., & Johnson, W. S. (1980). Fatigue of metal matrix composites. International Journal of Fracture, 16, 585–607.CrossRefGoogle Scholar
  80. Dvorak, G. J., & Laws, N. (1987). Analysis of progressive matrix cracking in composite laminates. II. First ply failure. Journal of Composite Materials, 21, 309–329.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  • George J. Dvorak
    • 1
  1. 1.Mechanical, Aeronautical and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations