Understanding and Forecasting Alpine Foehn

  • Hans Richner
  • Patrick Hächler
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


This chapter focuses on the history, physics, climatology, forecasting and the broad effects of Alpine foehn on human populations. In the European Alps, foehn winds have been studied since the mid-1800s. The main focus of the investigations was the question of why foehn winds are so warm. While it soon became clear that adiabatic processes provide an explanation, the role of wet adiabatic rising on the upwind side of the Alps continued to be strongly debated. The so-called textbook theory for foehn – heat gain by wet adiabatic, forced lifting on the upwind side followed by dry adiabatic descent in the lee – represents only an extreme situation. Foehn occurs also with partial or complete blocking of the upwind air mass, i.e., with limited or no heat gain by wet adiabatic expansion. The second focus is on processes which lead to descending air masses after passing the mountain ridge. A discussion of the most important processes shows that there seems to be no theory which is applicable in all situations. Forecasting foehn is still a challenge to meteorologists. While the general foehn situation can be predicted reliably, today’s numerical models still often poorly simulate the sudden break in of potentially devastating foehn air in the lee. Efforts to improve this must continue because foehn storms have a significant societal impact (threat to transportation systems and massive increase of fire danger) as several recent incidents show.


Hydraulic Jump Mountain Ridge Cold Pool Ridge Height Downslope Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank our colleagues in the “Alpine Research Group Foehn Rhine Valley/Lake Constance” for their contributions and support. In addition, we acknowledge valuable suggestions from three anonymous reviewers for improvements of our text.


  1. AGF, 2007:
  2. Barry, R.G., 2008: Mountain Weather and Climate. 3 rd edition, Cambridge University Press. 506 pp.Google Scholar
  3. Baumann, K., H. Maurer, G. Rau, M. Piringer, U. Pechinger, A. Prévôt, M. Furger, B. Neininger, and U. Pellegrini, 2001: The influence of south Foehn on the ozone distribution in the Alpine Rhine valley – results from the MAP field phase. Atmos. Environ., 35, 6379–6390.CrossRefGoogle Scholar
  4. Beran, D.W., 1967: Large amplitude lee waves and chinook winds. J. Appl. Meteorol., 6, 865–877.CrossRefGoogle Scholar
  5. Billwiller, R., 1899: Über verschiedene Entstehungsarten und Erscheinungsformen des Föhns. Meteorol. Z., 16, 204–215.Google Scholar
  6. Brinkmann W.A.R., 1971: What is Foehn? Weather, 26, 230–239.CrossRefGoogle Scholar
  7. Brinkmann, W.A.R., 1973: A climatological study of strong downslope winds in the Boulder area. NCAR, Coop. Thes. 27, Univ. of Colorado, INSTAAR Occasional Pap. No. 6, 229 pp.Google Scholar
  8. Brinkmann, W.A.R., 1974: Strong downslope winds at Boulder. Mon. Weather Rev., 102, 592–602.CrossRefGoogle Scholar
  9. Buchot, C., 1977: Le fœhn en Haute-Tarentaise. Rev. géographie alpine, 65, 257-276 l.CrossRefGoogle Scholar
  10. Burri K., P. Hächler, M. Schüepp, and R. Werner, 1999: Der Föhnfall vom April 1993. Arbeitsbericht 196, MeteoSchweiz, 193 pp.Google Scholar
  11. Burri, K., B. Dürr, Th. Gutermann, A. Neururer, R. Werner, and E. Zala, 2007: Foehn Verification with the COSMO Model. Poster, Int. Conf. Alpine Meteorol., June 4 to 8, 2007, Chambéry, France.Google Scholar
  12. Cooke, L.J., M.S. Rose, and W.J. Becker, 2000: Chinook winds and migraine headache. Neurology, 54, 302.CrossRefGoogle Scholar
  13. Courvoisier, H.W. und Th. Gutermann, 1971: Zur praktischen Anwendung des Föhntests von Widmer. Arbeitsbericht MeteoSchweiz, 21. (in German, out of print).Google Scholar
  14. Di Napoli, G. and L. Mercalli, 2008: Il vento (capitolo 27). In: Il Clima di Torino. Società Meteorologica Subalpina, Bussoleno, 629–660. ISBN 978-88-903023-4-3.Google Scholar
  15. Drechsel S. and G. Mayr, 2008: Objective Forecasting of Foehn Winds for a Subgrid-Scale Alpine Valley. Wea. Forecasting, 23, 205–218.CrossRefGoogle Scholar
  16. Drobinski, P., C. Haeberli, E. Richard, M. Lothon, A.M. Dabas, P.H. Flamant, M. Furger, and R. Steinacker, 2003: Scale interaction processes during the MAOP IOP 12 south foehn event in the Rhine Valley. Q.J.R. Meteorol. Soc., 129, 729–753.CrossRefGoogle Scholar
  17. Drobinski P, R. Steinacker, H. Richner, K. Baumann-Stanzer, G. Beffrey, B. Benech, H. Berger, B. Chimani, A. Dabas, M. Dorninger, B. Dürr, C. Flamant, M. Frioud, M. Furger, I. Gröhn, S. Gubser, Th. Gutermann, C. Häberli, E. Häller-Scharnhost, G. Jaubert, M. Lothon, V. Mitev, U. Pechinger, M. Piringer, M. Ratheiser, D. Ruffieux, G. Seiz, M. Spatzierer, S. Tschannett, S. Vogt, R. Werner, and G. Zängl, 2007: Foehn in the Rhine Valley during MAP: A review of its multiscale dynamics in complex valley geometry. Q.J.R. Meteorol. Soc., 133, 897–916.CrossRefGoogle Scholar
  18. Dürr, B., 2008: Automatisiertes Verfahren zur Bestimmung von Föhn in Alpentälern. Arbeitsbericht 223, MeteoSchweiz, 22 pp.Google Scholar
  19. Ficker, H., 1920: Der Einfluss der Alpen auf die Fallgebiete des Luftdruckes und die Entstehung von Depressionen über dem Mittelmeer. Meterol. Z., 55, 350–363.Google Scholar
  20. Ficker, H., 1931: Warum steigt der Föhn in die Täler herab? Meteorol. Z., 48, 227–229.Google Scholar
  21. Field, T.S. and M.D. Hill, 2002: Weather, Chinook, and Stroke Occurrence. Stroke, 33, 1751–1758.CrossRefGoogle Scholar
  22. Frey, K., 1944: Zur Entwicklung des Föhns. Verh. Schweiz. Naturforsch. Ges., 124. Jahresvers. Sils. 90–93.Google Scholar
  23. Frey, K., 1986: The simultaneous occurrence of North and South Foehn during a westerly flow over Central Europe. Meteor. Atmos. Phys., 34, 349–366.Google Scholar
  24. Gohm, A. and G. Mayr, 2004: Hydraulic Aspects of foehn winds in an Alpine Valley, Quart. J.R. Meteorol. Soc., 130, 449–480.CrossRefGoogle Scholar
  25. Gohm, A., G. Zängl, and G.J. Mayr, 2004: South Foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): Verification of High-Resolution Numerical Simulations with Observations. Mon. Wea. Rev., 132, 78–102.CrossRefGoogle Scholar
  26. Grubišić, V., J.D. Doyle, J. Kuettner, S. Mobbs, R.B. Smith, C.D. Whiteman, R. Dirks, S. Czyzyk, S.A. Cohn, S. Vosper, M. Weissmann, S. Haimov, S.F.J. De Wekker, L.L. Pan, and F.K. Chow, 2008: The Terrain-Induced Rotor Experiment. Bull. Amer. Meteor. Soc., 89, 1513–1533.CrossRefGoogle Scholar
  27. Grubišić, V. and B.J. Billings, 2008: Climatology of the Sierra Nevada Mountain-Wave Events. Mon. Wea. Rev., 136, 757–768.CrossRefGoogle Scholar
  28. Gubser, S., 2006: Wechselwirkung zwischen Föhn und planetarer Grenzschicht. Dissertation Nr. 16286, ETH Zürich, 121 pp.Google Scholar
  29. Hächler, P., K. Burri, B. Dürr, T. Gutermann, A. Neururer, H. Richner und R. Werner, 2011: Der Föhnfall vom 8. Dezember 2006 – Eine Fallstudie. Arbeitsbericht 234, MeteoSchweiz, 52 pp.Google Scholar
  30. Hann, J., 1866: Zur Frage über den Ursprung des Föhns. Z. Österr. Ges. Meteorol., 1, 257–263.Google Scholar
  31. Hann, J., 1901: Lehrbuch der Meteorologie. Tauchnitz, Leipzig, 805 pp.Google Scholar
  32. Hoinka, K.P., 1985a: Observations of the airflow over the Alps during foehn. Quart. J.R. Meteorol. Soc., 111, 199–224.CrossRefGoogle Scholar
  33. Hoinka, K.P., 1985b: What is a Foehn Clearance. Bull. Am. Meteor. Soc., 66, 1123–1132.CrossRefGoogle Scholar
  34. Hoinka, K.P., 1990: Untersuchungen der alpinen Gebirgsüberströmung bei Südföhn. Forschungsbericht der DLR, FB 9030, 186 pp.Google Scholar
  35. Jaubert, G. and J. Stein, 2003: Multiscale and unsteady aspects of a deep foehn event during MAP. Q.J.R. Meteorol. Soc., 129, 755–776.CrossRefGoogle Scholar
  36. Klemp, J.B. and D.R. Lilly, 1975: The Dynamics of Wave-Induced Downslope Winds. J. Atmos. Sci., 32, 320–339.CrossRefGoogle Scholar
  37. Lothon, M., 2002: Etude phénoménologique du foehn dans la vallée du Rhin dans le cadre de l’expérience MAP (Mesoscale Alpine Programme). Thèse, Université Paul Sabatier, Toulouse, 260 pp.Google Scholar
  38. Lothon, M., A. Druilhet, B. Bénech, B. Campistron, S. Bernard, F. Saïd, 2003: Experimental study of five foehn events during the Mesoscale Alpine Programme: from synoptic scale to turbulence. Q.J.R. Meteorol. Soc., 129, 2171–2193.CrossRefGoogle Scholar
  39. Lyra, G., 1940: Über den Einfluss von Bodenerhebungen auf die Strömung einer stabil geschichteten Atmospäre. Beitr. Phys. frei. Atmos., 26, 197–206.Google Scholar
  40. McGowan H.A., A.P. Sturman, M. Kossmann, and P. Zawar-Reza, 2002, Observations of foehn onset in Southern Alps, New Zealand, Meteorol. Atmos. Phys., 79, 215–230.CrossRefGoogle Scholar
  41. Musso A. and C. Cassardo, 2004: Climatologia del foehn in Piemonte. Nimbus, 3132, 4045.Google Scholar
  42. Queney, M. P., 1948: The problem of airflow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 16–26.Google Scholar
  43. Raphael, M.N., 2003: The Santa Ana Winds of California. Earth Interact., 7, 1–13.CrossRefGoogle Scholar
  44. Richner, H. and Th. Gutermann, 2007: Statistical analysis of foehn in Altdorf, Switzerland. Extended Abstracts Volume 2, Int. Conf. Alpine Meteorol., June 4 to 8, 2007, Chambéry, France, 457–460.Google Scholar
  45. Richner, H., K. Baumann-Stanzer, B. Benech, H. Berger, B. Chimani, M. Dorninger, P. Drobinski, M. Furger, S. Gubser, Th. Gutermann, C. Häberli, E. Häller, M. Lothon, V. Mitev, D. Ruffieux, G. Seiz, R. Steinacker, S. Tschannett, S. Vogt, and R. Werner, 2005: Unstationary aspects of foehn in a large valley, part I: operational setup, scientific objectives and analysis of the cases during the special observing period of the MAP subprogramme FORM., Meteorol. Atmos. Phys., 92, 255–284.CrossRefGoogle Scholar
  46. Rossmann, F., 1950: Über das Absteigen des Föhns in die Täler. Ber. deutsch. Wetterd. US-Zone, 12, 94–98.Google Scholar
  47. Schamp, H., 1964: Die Winde der Erde und ihre Namen. Franz Steiner Verlag, Wiesbaden, 94 pp.Google Scholar
  48. Schüepp, W., 1952: Die qualitative und quantitative Bedeutung der Föhnmauer. Meteorol. Rdsch., 5, 136–138.Google Scholar
  49. Schweitzer, H., 1953: Versuch einer Erklärung des Föhns als Luftströmung mit überkritischer Geschwindigkeit. Arch. Meteor. Geophys. Bioklimatol., A5, 350–371.Google Scholar
  50. Scorer, R.S., 1978: Environmental Aerodynamics. Wiley & Sons, 488 pp.Google Scholar
  51. Seibert, P., 1990: South foehn studies since the ALPEX experiment. Meteorol. Atmos. Phys., 43, 91–103.CrossRefGoogle Scholar
  52. Seibert, P., 2005: Hann’s Thermodynamic Foehn Theory and its Presentation in Meteorological Textbooks in the Course of Time. From Beaufort to Bjerknes and Beyond, Algorismus, Issue 52, 169–180; ISBN 978-3936905-13-7.Google Scholar
  53. Sheridan, P.F., V. Horlacher, G.G. Rooney, P. Hignett, S.D. Mobbs, and S.B. Vosper, 2007: Influence of lee waves on the near-surface flow downwind of the Pennines. Q.J.R. Meteorol. Soc., 133, 1353–1369.CrossRefGoogle Scholar
  54. Sprenger, M., and C. Schär, 2001: Rotational aspects of stratified gap flows and shallow foehn. Quart. J.R. Meteorol. Soc., 127, 161–187.Google Scholar
  55. Steinacker, R., 2006: Alpine foehn – a new verse to an old song. Promet, 32, 3–10 (in German).Google Scholar
  56. Streiff-Becker, R., 1933: Die Föhnwinde. Viertelj.schr. Naturforsch. Ges. Zürich, 78, 66.Google Scholar
  57. Streiff-Becker, R., 1947: Der Dimmerföhn. Viertelj.schr. Naturforsch. Ges. Zürich, 92, 195–198.Google Scholar
  58. Vergeiner J. and G. Mayr, 2000: Case study of the MAP-IOP “Sandwich” foehn on 18th October 1999. MAP Newsletter, 13, 36–37.Google Scholar
  59. Wild, H., 1901: Über den Föhn und Vorschlag zur Beschränkung seines Begriffs. Denkschr. Schweiz. Naturf. Ges., 38, 99 p. plus appendix.Google Scholar
  60. WMO (ed.), 1992: International Meteorological Vocabulary. WMO No. 182, World Meteorological Organization, Geneva, Switzerland, 784 pp.Google Scholar
  61. Zängl, G., 2002: Idealized numerical simulations of shallow föhn. Quart. J.R. Meteorol. Soc., 128, 431–450.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate Science (IACETH)ETH ZurichZurichSwitzerland
  2. 2.Federal Office of Meteorology and Climatology MeteoSwissZurichSwitzerland

Personalised recommendations