Skip to main content

The Error Detection Mechanism Among Dyslexic and Skilled Readers: Characterization and Plasticity

  • Chapter
  • First Online:

Part of the book series: Literacy Studies ((LITS,volume 6))

Abstract

The error detection mechanism, which is part of the human cognitive control system, is intended to prevent an error reoccurring. Its activation can be measured by the elicitation of two event-related potential components: error (ERN) and correct-related negativities (CRN). This chapter explores the evidence of the existence of this mechanism among dyslexics, despite their tendency to repeat reading errors. Because the mechanism is part of the brain’s learning circuitry, its ability to change naturally during development and following intervention programs aimed at improving dyslexics’ reading ability is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashkenazi, S., Rubinstein, O., & Henik, A. (2009). Attention, automaticity, and developmental dyscalculia. Neuropsychology, 23(4), 535–540.

    Google Scholar 

  • Ackerman, P. T., & Dykman, R. A. (1993). Phonological processes, confrontational naming, and immediate memory in dyslexics. Journal of Learning Disabilities, 26, 597–609.

    Article  PubMed  Google Scholar 

  • Adams, M. J. (1990). Beginning to read: Thinking and learning about print. Cambridge, MA: MIT Press.

    Google Scholar 

  • Band, G. P. H., & Kok, A. (2000). Age effects on response monitoring in mental-rotation task. Biological Psychology, 52, 201–221.

    Article  Google Scholar 

  • Bentin, S. (1987). Event-related potentials, semantic processes, and expectancy factors in word recognition. Brain and Language, 31, 308–327.

    Article  PubMed  Google Scholar 

  • Bernstein, P. S., Scheffers, M. K., & Coles, M. G. H. (1995). Where did I go wrong? A psychophysiological analysis of error detection. Journal of Experimental Psychology. Human Perception and Performance, 21, 1312–1322.

    Article  PubMed  Google Scholar 

  • Breznitz, Z. (1987). Increasing first graders’ reading accuracy and comprehension by accelerating their reading rate. Journal of Educational Psychology, 79, 236–242.

    Article  Google Scholar 

  • Breznitz, Z. (1997a). Enhancing the reading of dyslexic children by reading acceleration and auditory masking. Journal of Educational Psychology, 89, 103–113.

    Article  Google Scholar 

  • Breznitz, Z. (1997b). Effects of accelerated reading rate on memory for text among dyslexic readers. Journal of Educational Psychology, 89, 289–297.

    Article  Google Scholar 

  • Breznitz, Z. (2001). The determinants of reading fluency: A comparison of dyslexic and average readers. In M. Wolf (Ed.), Dyslexia, fluency and the brain (pp. 245–276). Timonium: York Press.

    Google Scholar 

  • Breznitz, Z. (2006). Fluency in reading: Synchronization of processes. Mahwah: Lawrence Erlbaum and Associates.

    Google Scholar 

  • Breznitz, Z. (2008). Special issue on the use of electrophysiological measures in reading research. Journal of Neurolinguistics, 21, 277–278.

    Article  Google Scholar 

  • Breznitz, Z., & Gilore, O. (Submitted). Errors in reading in readers with dyslexia.

    Google Scholar 

  • Breznitz, Z., & Nevat, M. (2004). The reading acceleration program (RAP). Haifa: The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa.

    Google Scholar 

  • British Psychological Society. (1999). Dyslexia, literacy and psychological assessment. Leicester, UK: British Psychological Society.

    Google Scholar 

  • Burgio-Murphy, A., et al. (2007). Error-related event-related potentials in children with attention-deficit hyperactivity disorder, oppositional defiant disorder, reading disorder, and math disorder. Biological Psychology, 75, 75–86.

    Article  PubMed  Google Scholar 

  • Chall, J. S. (1983). Learning to read: The great debate. New York: Wiley.

    Google Scholar 

  • CogniFit Personal Coach (CPC) training program and database. (2008). Yokneam: CogniFit LTD.

    Google Scholar 

  • Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error processing. Biological Psychology, 56, 173–189.

    Article  PubMed  Google Scholar 

  • Davies, P. L., Segalowitz, S., & Gavin, W. J. (2004). Development of error-monitoring event-related potentials in adolescents. Annals of the New York Academy of Science, 1021, 324–328.

    Article  Google Scholar 

  • Davis, P. L., Segalowitz, S. J., Dywan, J., & Pailing, P. E. (2001). Error-negativity and positivity as they relate to other ERP indices of attentional control and stimulus processing. Biological Psychology, 56, 191–206.

    Article  Google Scholar 

  • Dikman, Z. V., & Allen, J. J. B. (2000). Error monitoring during reward and avoidance learning in high and low socialized individuals. Psychophysiology, 37, 43–54.

    Article  PubMed  Google Scholar 

  • Facoetti, A., Paganoni, A., Turatto, M., Marzola, V., & Macetti, G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36, 109–123.

    Article  PubMed  Google Scholar 

  • Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components II Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455.

    Article  PubMed  Google Scholar 

  • Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 2–3, 87–107.

    Article  Google Scholar 

  • Falkenstein, M., et al. (2001). Action monitoring, error detection and the basal ganglia: An ERP study. Neuroreport, 12, 157–161.

    Article  PubMed  Google Scholar 

  • Ganushchak, L. Y., & Schiller, N. O. (2006). Effects of time pressure on verbal self monitoring: An ERP study. Brain Research, 1125, 104–115.

    Article  PubMed  Google Scholar 

  • Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.

    Article  Google Scholar 

  • Gruber, S. A., Rogowska, J., & Yurgelum-Todd, D. A. (2004). Decreased activation of the anterior cingulate in bipolar patients: An fMRI study. Journal of Affective Disorders, 82, 191–201.

    Article  PubMed  Google Scholar 

  • Hajcak, G., McDonald, N., & Simons, R. F. (2003). Anxiety and error related brain activity. Biological Psychology, 64, 77–90.

    Article  PubMed  Google Scholar 

  • Herrmann, M. J., Rommler, J., Ehlis, A. C., Heidrich, A., & Fallgatter, A. J. (2004). Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Cognitive Brain Research, 20, 294–299.

    Article  PubMed  Google Scholar 

  • Hochman, E. Y., & Meiran, N. (2005). Central interference in error processing. Memory and Cognition, 33, 635–643.

    Article  Google Scholar 

  • Holroyd, C., & Coles, M. G. M. (2002). The neural basis of human error processing: Reinforcement learning, dopamine and the error related negativity. Psychological Review, 109, 679–709.

    Article  PubMed  Google Scholar 

  • Horowitz-Kraus, T. (2011). Does development affect the error-related negativity of dyslexic and skilled readers in reading? An ERP study. Developmental Neuropsychology, 36, 914–932.

    Google Scholar 

  • Horowitz-Kraus, T., & Breznitz, Z. (2008). An error detection mechanism in reading among dyslexic and regular readers – An ERP study. Clinical Neurophysiology, 119, 2238–2246.

    Article  PubMed  Google Scholar 

  • Horowitz-Kraus, T., & Breznitz, Z. (2009). Can the error detection mechanism benefit from training the working memory? A comparison between dyslexics and controls – An ERP study. PLoS One, 4(9), e7141.

    Article  PubMed  Google Scholar 

  • Horowitz-Kraus, T., & Breznitz, Z. (2010). Reaction time in error response among dyslexic and regular readers: From letters to sentences. Dyslexia. doi:10.1002/dys.417.

  • Horowitz-Kraus, T., & Breznitz, Z. (2011). Error detection mechanism at words and sentences: A comparison between readers with dyslexia and skilled readers. The International Journal of Developmental Disabilities and Education, 58(1), 33–45.

    Article  Google Scholar 

  • Ito, J. (2004). Error processing in patients with PD. International Congress Series, 1270, 275–278.

    Article  Google Scholar 

  • Karni, A. (1996). The acquisition of perceptual and motor skills: A memory system in the adult human cortex. Brain Research. Cognitive Brain Research, 5, 39–48.

    Article  PubMed  Google Scholar 

  • Katzir, T., et al. (2006). Reading fluency: The whole is more than the parts. Annals of Dyslexia, 56, 51–79.

    Article  PubMed  Google Scholar 

  • Kintsch, W. (1998). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95, 163–182.

    Article  Google Scholar 

  • Kutas, M., & Delong, K. A. (2008). A sampler of event related brain potential (ERP) analyses of language processing. Brain Research in Language, 1, 153–186.

    Article  Google Scholar 

  • Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Science, 4, 463–470.

    Article  Google Scholar 

  • Kutas, M., & Hillyard, S. A. (1983). Event-related brain potentials to grammatical errors and semantic anomalies. Memory and Cognition, 11, 539–550.

    Article  Google Scholar 

  • Levelt, W. J. M. (1983). Monitoring and self repair in speech. Cognition, 14, 41–109.

    Article  PubMed  Google Scholar 

  • Lioti, M., Pliszka, S. R., Perez, R., Kothmann, D., & Woldorff, M. G. (2005). Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex, 41, 377–388.

    Article  Google Scholar 

  • Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Physiological Science, 14, 47–53.

    Google Scholar 

  • MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex incognitive control. Science, 288(5472), 1835–1838.

    Article  PubMed  Google Scholar 

  • Masaki, H., Tanaka, H., Takasawa, N., & Yamazaki, K. (2001). Error-related brain potentials elicited by vocal errors. Neuroreport, 12, 1851–1855.

    Article  PubMed  Google Scholar 

  • Nagy, W., Berninger, V. W., & Abbott, R. D. (2006). Contributions of morphology beyond phonology to literacy outcomes of upper elementary and middle-school students. Journal of Educational Psychology, 98, 134–147.

    Article  Google Scholar 

  • Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38, 752–760.

    Article  PubMed  Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klinberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79.

    Article  PubMed  Google Scholar 

  • Pailing, P. E., & Segalowitz, S. J. (2004). The effects of uncertainty in error monitoring on associated ERPs. Brain and Cognition, 56, 215–233.

    Article  PubMed  Google Scholar 

  • Poldrack, R. A., & Gabrieli, J. D. E. (2000). Characterizing the neural mechanisms of skill learning and repetition priming: Evidence from mirror reading. Brain, 124, 67–82.

    Article  Google Scholar 

  • Ransby, M. J., & Swanson, L. H. (2003). Reading comprehension skills of young adults with childhood diagnoses of dyslexia. Journal of Learning Disabilities, 36, 538–555.

    Article  PubMed  Google Scholar 

  • Robichon, F., Besson, M., & Habib, M. (2002). An electrophysiological study of dyslexic and control adults in a sentence reading task. Biological Psychology, 59, 29–53.

    Article  PubMed  Google Scholar 

  • Rugg, M. D., & Nagy, M. E. (1987). Lexical contribution to nonword-repetition effects: Evidence from event related potentials. Memory and Cognition, 15, 473–481.

    Article  Google Scholar 

  • Santesso, D. L., & Segalowitz, S. J. (2009). The error-related negativity is related to risk-taking and empathy in young men. Psychophysiology, 46, 143–152.

    Article  PubMed  Google Scholar 

  • Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception and Performances, 26, 141–151.

    Article  Google Scholar 

  • Sebastian-Galles, N., Rodriguez-Fornells, A., Diego-Balaguer, R., & Diaz, B. (2006). First-and second-language phonological representations in the mental lexicon. Journal of Cognitive Neuroscience, 18, 1277–1291.

    Article  PubMed  Google Scholar 

  • Segalowitz, S. J., & Dywan, J. (2009). Individual differences and developmental changes in the ERN response: Implications for models of ACC function. Psychological Research, 73, 857–870.

    Article  PubMed  Google Scholar 

  • Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self- teaching. Journal of Experimental Child Psychology, 87, 267–298.

    Article  PubMed  Google Scholar 

  • Shiran, A. (2009). The effect of working memory training on recall range and speed of information processing in working memory among dyslexics as compared to regular readers. Unpublished M.A thesis. The Faculty of Education, University of Haifa, Israel.

    Google Scholar 

  • Smith-Spark, J. H., Fisk, J. E., Fawcett, A. J., & Nicolson, R. I. (2003). Central executive impairments in adult dyslexics: Evidence from visuospatial working memory performance. European Journal of Cognitive Psychology, 15, 567–587.

    Article  Google Scholar 

  • Snowling, M. J., & Nation, K. A. (1997). Language, phonology, and learning to read. In C. Hulme & M. Snowling (Eds.), Dyslexia: Biology, cognition and intervention (pp. 153–166). London: Whurr Publishers, Ltd.

    Google Scholar 

  • Sternberg, S. (1966). High speed scanning in human memory. Science, 153, 652–654.

    Article  PubMed  Google Scholar 

  • Stiles, J. (2000). Neural plasticity and cognitive development. Developmental Neuropsychology, 18, 237–272.

    Article  PubMed  Google Scholar 

  • Thomson, M. (1978). A psycholinguistic analysis of reading errors made by dyslexics and normal readers. Journal of Research in Reading, 1, 7–20.

    Article  Google Scholar 

  • Van De Voorde, S., Roeyers, H., Verté, S., & Wiersema, R. (2010a). Working memory, response inhibition, and within-subject variability in children with attention-deficit/hyperactivity disorder or reading disorder. Journal of Clinical Neuropsychology, 32, 366–379.

    Article  Google Scholar 

  • Van De Voorde, S., Roeyers, H., Verté, S., & Wiersema, R. (2010b). Error monitoring in children with ADHD or reading disorder: An event-related potential study. Biological Psychology, 84, 176–85.

    Article  Google Scholar 

  • Van Meel, C. S., Heslenfeld, D. J., Oosterlaan, J., & Sergeant, J. A. (2007). Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): The role of error processing. Psychiatry Research, 51, 211–220.

    Article  Google Scholar 

  • Vidal, F., Burle, B., Bonnet, M., Grapperon, J., & Hasbrouccq, T. (2003). Error negativity on correct trials: A reexamination of available data. Biological Psychology, 64, 265–282.

    Article  PubMed  Google Scholar 

  • Walczyk, J. J. (1990). Relation among error detection, sentence verification, and low-level reading skills of fourth graders. Journal of Educational Psychology, 82, 491–497.

    Article  Google Scholar 

  • Wiersema, J. R., van der Meere, J. J., & Roeyers, H. (2005). ERP correlates of impaired error monitoring in children with ADHD. Journal of Neural Transmission, 112, 1417–1430.

    Article  PubMed  Google Scholar 

  • Yeung, N., Cohen, J. D., & Botvinick, M. M. (2004). The neural basis of error detection: Conflict monitoring and the error related negativity. Psychological Review, 111, 931–959.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzipi Horowitz-Kraus Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Horowitz-Kraus, T. (2012). The Error Detection Mechanism Among Dyslexic and Skilled Readers: Characterization and Plasticity. In: Breznitz, Z., Rubinsten, O., Molfese, V., Molfese, D. (eds) Reading, Writing, Mathematics and the Developing Brain: Listening to Many Voices. Literacy Studies, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4086-0_7

Download citation

Publish with us

Policies and ethics