Skip to main content

OCT Noise Despeckling Using 3D Nonlinear Complex Diffusion Filter

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 1))

Abstract

An improved despeckling method, based on complex diffusion filtering, is herein presented to enhance structure segmentation in high-definition spectral domain optical coherence tomography (OCT) data. We propose to extend the traditional nonlinear complex diffusion filter concept propose by Gilboa IEEE Trans Pattern Anal Mach Intell 26:1020–1036, 2004) from 2- to 3-dimensions, taking into account the consistency of noise along the entire 3D data volume. Moreover we also propose the extension to 3D of an improved complex diffusion filter (Bernardes et al. Opt Express 18:24,048–24,059, 2010), that was specially built for retinal tissue signal preservation in OCT data and that takes into account an adaptive optimized time step for the finite difference discretization. The extension to 3D of the traditional method compares favorably to existing methods reducing speckle noise and preserving edges and features. As expected, the improved 3D version has better performance than the traditional one. Numerical simulations show the feasibility of the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbott J, Thurstone F (1979) Acoustic speckle: theory and experimental analysis. Ultrason Imaging 1:303–324

    Google Scholar 

  2. Araújo A, Barbeiro S, Serranho P (2010) Stability of finite difference schemes for complex diffusion processes. DMUC report, Estudo Geral, Universidade de Coimbra, pp 10–23

    Google Scholar 

  3. Bagci A, Shahidi M, Ansari R, Blair M, Blair N, Zelkha R (2008) Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146(5): 679–687

    Google Scholar 

  4. Baroni M, Fortunato P, Torre AL (2007) Towards quantitative analysis of retinal features in optical coherence tomography. Med Eng Phys 29:432–441

    Google Scholar 

  5. Bashkansky M, Reintjes J (2000) Statistics and reduction of speckle in optical coherence tomography. Opt Lett 25(8):545–547

    Google Scholar 

  6. Bernardes R, Maduro C, Serranho P, Araújo A, Barbeiro S, Cunha-Vaz J (2010) Improved adaptive complex diffusion despeckling filter. Opt Express 18(23):24,048–24,059. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-23-24048

    Google Scholar 

  7. Bernstein R (1987) Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images. IEEE Trans Circuit Syst 34(11):1275–1291

    Google Scholar 

  8. Burckhardt C (1978) Speckle in ultrasound b-mode scans. IEEE Trans Sonic Ultrason 25(1): 1–6

    Google Scholar 

  9. Drexler W, Morgner U, Ghanta R, Kärtner F, Schuman J, Fujimoto J (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7(4):502–507

    Google Scholar 

  10. Fercher A (2008) Optical coherence tomography: technology and applications, illustrated edn., Chap. 4. Springer, New York, pp 119–146

    Google Scholar 

  11. Fernández D, Salinas H, Puliafito C (2005) Automated detection of retinal layer structures on optical coherence tomography images. Opt Express 13(25):10,200–10,216

    Google Scholar 

  12. Franceschetti G, Pascazio V, Schirinzi G (1995) Iterative homomorphic technique for speckle reduction in synthetic-aperture radar imaging. J Opt Soc Am A 12(4):686–694

    Google Scholar 

  13. Gilboa G, Sochen N, Zeevi Y (2004) Image enhancement and denoising by complex diffusion processes. IEEE Trans Pattern Anal Mach Intell 26(8):1020–1036

    Google Scholar 

  14. Goodman J (1976) Some fundamental properties of speckle. J Opt Soc Am 66(11):1145–1150

    Google Scholar 

  15. Healey A, Leeman S, Forsberg F (1992) Turning off speckle. Acoust Imaging 19:433–437

    Google Scholar 

  16. Iftimia N, Bouma B, Tearney G (2003) Speckle reduction in optical coherence tomography by “path length encoded” angular compounding. J Biomed Opt 8(2):260–263. doi:10.1117/1.1559060

    Google Scholar 

  17. Ishikawa H, Stein D, Wollstein G, Beaton S, Fujimoto J, Schuman J (2005) Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 46(6):2012–2017

    Google Scholar 

  18. Kim J, Miller D, Kim E, Oh S, Oh J, Milner T (2005) Optical coherence tomography speckle reduction by a partially spatially coherent source. J Biomed Opt 10(6):064034. doi:10.1117/1.2138031

    Google Scholar 

  19. Koozekanani D, Boyer K, Roberts C (2000) Retinal thickness measurements in optical coherence tomography using a markov boundary model. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition (CVPR), vol. 2. Hilton Head Island

    Google Scholar 

  20. Kuan D, Sawchuk A, Strand T, Chavel P (1985) Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans Pattern Anal Mach Intell 7(2):165–177

    Google Scholar 

  21. Kuwahara M, Hachimura K, Eiho S, Kinoshita M (1976) Processing of riangiocardiographic images. In: Preston K, Onoe M (eds) Digital processing of biomedical images. Plenum Publishing, New York, pp 187–203

    Google Scholar 

  22. Lee J (1981) Speckle analysis and smoothing of synthetic aperture radar images. Comput Graph Image Process 17(1):24–32

    Google Scholar 

  23. Ozcan A, Bilenca A, Desjardins A, Bouma B, Tearney G (2007) Speckle reduction in optical coherence tomography images using digital filtering. J Opt Soc Am A 24(7):1901–1910

    Google Scholar 

  24. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. http://dx.doi.org/10.1109/34.56205

    Google Scholar 

  25. Pircher M, Gotzinger E, Leitgeb R, Fercher A, Hitzenberger C (2003) Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 8(3):565–569. doi:10.1117/1.1578087

    Google Scholar 

  26. Puvanathasan P, Bizheva K (2007) Speckle noise reduction algorithm for optical coherence tomography based on interval type ii fuzzy set. Opt Express 15(24):15,747–15,758

    Google Scholar 

  27. Rogowska J, Brezinski M (2000) Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE Trans Med Imaging 19(12):1261–1266

    Google Scholar 

  28. Salinas H, Fernández D (2007) Comparison of pde-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Trans Med Imaging 26(6):761–771. doi:10.1109/TMI.2006.887375

    Google Scholar 

  29. Schmitt J (1997) Array detection for speckle reduction in optical coherence microscopy. Phys Med Biol 42(7):1427–1439

    Google Scholar 

  30. Schmitt J (1998) Restoration of optical coherence images of living tissue using the clean algorithm. J Biomed Opt 3(1):66–75. doi:10.1117/1.429863

    Google Scholar 

  31. Schmitt J, Xiang S, Yung K (1999) Speckle in optical coherence tomography. J Biomed Opt 4(1):95–105. doi:10.1117/1.429925

    Google Scholar 

  32. Shahidi M, Wang Z, Zelkha R (2005) Quantitative thickness measurement of retinal layers imaged by optical coherence tomography. Am J Ophthalmol 139(6):1056–1061

    Google Scholar 

  33. Shankar P, Newhouse V (1985) Speckle reduction with improved resolution in ultrasound images. IEEE Trans Sonic Ultrason 32(4):537–543

    Google Scholar 

  34. Tan O, Li G, Lu A, Varma R, Huang D (2008) Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmol 115(6):949–956. doi:10.1016/j.ophtha.2007.08.011

    Google Scholar 

  35. Wagner R, Smith S, Sandrik J, Lopez H (1983) Statistics of speckle in ultrasound b-scans. IEEE Trans Sonic Ultrason 30(3):156–163

    Google Scholar 

  36. Weickert J (1997) A review of nonlinear diffusion filtering. In: Proceedings of the first international conference on scale-space theory in computer vision, Springer, London, pp 3–28

    Google Scholar 

  37. Xiang S, Zhou L, Schmitt J (1998) Speckle noise reduction for optical coherence tomography. Opt Imaging Tech Biomonit III Proc SPIE 3196(1):79–88. doi:10.1117/12.297921

  38. Yung K, Lee S, Schmitt J (1999) Phase-domain processing of optical coherence tomography images. J Biomed Opt 4(1):125–136. doi:10.1117/1.429942

    Google Scholar 

Download references

Acknowledgements

This study is supported in part by the Fundação para a Ciência e a Tecnologia (FCT) under the research project PTDC/SAU-BEB/103151/2008 and program COMPETE (FCOMP-01-0124-FEDER-010930). The authors would like to thanks Dr. Melissa Horne and Carl Zeiss Meditec (Dublic, CA, USA) for their support on getting access to OCT data and AIBILI Clinical Trial Center technicians for their support in managing data, working with patients and performing scans. This study is registered at ClinicalTrials.org (ID: NCT00797524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Maduro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maduro, C., Serranho, P., Santos, T., Rodrigues, P., Cunha-Vaz, J., Bernardes, R. (2012). OCT Noise Despeckling Using 3D Nonlinear Complex Diffusion Filter. In: Natal Jorge, R., Tavares, J., Pinotti Barbosa, M., Slade, A. (eds) Technologies for Medical Sciences. Lecture Notes in Computational Vision and Biomechanics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4068-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4068-6_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4067-9

  • Online ISBN: 978-94-007-4068-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics