Skip to main content

Supercritical Solvent Impregnation of Natural Bioactive Compounds in N-Carboxybutylchitosan and Agarose Membranes for the Development of Topical Wound Healing Applications

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 1))

Abstract

Supercritical Solvent Impregnation (SSI) was used to load topical membrane-type wound dressing biomaterials with natural based bioactive compounds namelly quercetin as an antiinflammatory and thymol as anaesthetic and skin permeation enhancer. The biodegradable and biocompatible membranes where prepared as film- and foam-like structures of N-carboxybutylchitosan and agarose to study the influence of morphological structure on the fluid handling capacities of the materials. Results show that SSI is a feasible and advantageous process that permits to ‘tune’ the relative loaded amounts of the bioactive substances by changing the operational conditions. The process also promotes the size reduction of quercetin particles with a significant improvement in its solubility in aqueous solutions and consequently in its bioavailability. The prepared materials present a sustained delivery for quercetin and adequate fluid handling capacities that are in the typical and desired ranges for commercial wound dressings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Robson MC (1997) Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 77:637–650

    Article  Google Scholar 

  2. Attinger CE (2006) Plastic and reconstructive surgery, Supplement 117(7S): 72S-109S

    Google Scholar 

  3. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366: 1736–1743

    Article  Google Scholar 

  4. Wiseman DM, Rovee DT, Alvarez OM (1992) Wound dressings: design and use. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds) Wound healing: biochemical and clinical aspects. Saunders, Philadelphia, pp 562–580

    Google Scholar 

  5. Rajendran S (2009) Advanced textiles for wound care. Woodhead Publishing Limited/CRC Press LLC, Oxford/Boca Raton

    Google Scholar 

  6. Winter GD (2006) Some factors affecting skin and wound healing. J Tissue Viability 16:20–23

    Google Scholar 

  7. Ovington LG, Peirce B (2001) Wound dressings: form, function, feasibility, and facts. In: Krasner DL, Rodeheaver GT, Sibbald RG (eds) Chronic wound care: a clinical source book for healthcare professionals, 3rd edn. HMP Communications, Wayne, pp 311–319

    Google Scholar 

  8. Cutting KF, White RJ (2002) Maceration of the skin: 1: the nature and causes of skin maceration. J Wound Care 11:275–278

    Google Scholar 

  9. White RJ, Cutting KF (2004) Maceration of the skin and wound bed by indication. In: White RJ (ed) Trends in wound care III. Quay, Dinton

    Google Scholar 

  10. Winter GD (1962) Formation of the scab and the rate of epithelialisation of superficial wounds in the skin of the young domestic pig. Nature 193:293–294

    Article  Google Scholar 

  11. Winter GD (1963) Effect of air exposure and occlusion on experimental human skin wounds. Nature 200:378–379

    Article  Google Scholar 

  12. Weller C, Sussman G (2006) Wound dressings update. J Pharm Pract Res Geriatr Ther 36:318–324

    Google Scholar 

  13. Aramwit P, Muangman P, Namviriyachote N, Srichana T (2010) In vitro evaluation of the antimicrobial effectiveness and moisture binding properties of wound dressings. Int J Mol Sci 11:2864–2874

    Article  Google Scholar 

  14. Jones V, Grey JE, Harding KG (2006) Wound dressings. BMJ 332:777–780

    Article  Google Scholar 

  15. Mi FL, Wu Y, Shyu SS, Schoung JY, Huang YB, Tsai YH, Hao JY (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59:438–449

    Article  Google Scholar 

  16. Mi FL, Wu YB, Shyu SS, Chao AC, Lai JY, Su CC (2003) Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. J Membr Sci 212:237–254

    Article  Google Scholar 

  17. Sripriya R, Kumar MS, Sehgal PK (2004) Improved collagen bilayer for the controlled release of drugs. J Biomed Mater Res B Appl Biomater 70B:389–396

    Article  Google Scholar 

  18. Sezer AD, Hatipoglu F, Cevher E, Ogurtan Z, Bas AL, Akbuga J (2007) Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS Pharm Sci Tech 8:E1–E8

    Article  Google Scholar 

  19. Prabu SL, Shirwaikar AA, Shirwaikar A, Kumar A, Jacob A (2008) Design and evaluation of matrix diffusion controlled transdermal patches of diltiazem hydrochloride. Ars Pharm 49:211–227

    Google Scholar 

  20. Knill CJ, Kennedy JF, Mistry J, Miraftab M, Smart G, Groocock MR, Williams HJ (2004) Alginate fi bres modifi ed with unhydrolyzed and hydrolyzed chitosans for wound dressings. Carbohydr Polym 55:65–76

    Article  Google Scholar 

  21. Fan L, Du Y, Zhang B, Yang J, Cai J, Zhang L, Zhou J (2005) Preparation and properties of alginate/water-soluble chitin blend fibres. J Macromol Sci, A 42:723–732

    Google Scholar 

  22. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A: Physicochem Eng Aspects 313–314:183–188

    Article  Google Scholar 

  23. D’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106

    Article  Google Scholar 

  24. Skjak-Braek G, Anthonsen T, Sandford PA (1989) Chitin and chitosan: sources, chemistry, biochemistry, physical properties, and applications. Elsevier, New York

    Google Scholar 

  25. Yang H, Zhou S, Deng X (2003) Preparation and properties of hydrophilic–hydrophobic chitosan derivatives. J Appl Polym Sci 92:1625–1632

    Article  Google Scholar 

  26. Moseley R, Stewart JE, Stephens P, Waddington RJ, Thomas DW (2004) Extracellular matrix metabolites as potential biomarkers of disease activity in wound fluid: lessons learned from other inflammatory diseases? Br J Dermatol 150:401–413

    Article  Google Scholar 

  27. James TJ, Hughes MA, Cherry GW, Taylor PT (2003) Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen 11:172–176

    Article  Google Scholar 

  28. Muzzarelli RR, Tarsi O, Filippini E, Giovanetti G, Biagini PE (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023

    Article  Google Scholar 

  29. Öztürk E, Agalar C, Keçeci K, Denkbas EB (2006) Preparation and characterization of ciprofloxacin-loaded alginate/chitosan sponge as a wound dressing material. J Appl Polym Sci 101:1602–1609

    Article  Google Scholar 

  30. Wang N, Wu XS (1997) Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm Develop Techn 2:135–142

    Article  Google Scholar 

  31. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. J Biomat Sci Polym 12:267–281

    Article  Google Scholar 

  32. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  Google Scholar 

  33. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  Google Scholar 

  34. Lozinsky VI, Damshkaln LG, Bloch KO, Vardi P, Grinberg NV, Burova TV, Grinberg VY (2008) Cryostructuring of polymer systems. XXIX. Preparation and characterization of supermacroporous (spongy) agarose-based cryogels used as three-dimensional scaffolds for culturing insulin-producing cell aggregates. J App Polym Sci 108:3046–3062

    Article  Google Scholar 

  35. Roman JMV, Cabanas JP, Doadrio JC, Vallet-Regi M (2008) An optimized b-tricalcium phosphate and agarose scaffold fabrication technique. J Biomed Mater Res 84A:99–107

    Article  Google Scholar 

  36. Borkow G, Okon-Levy N, Gabbay J (2010) Copper oxide impregnated wound dressing: biocidal and safety studies. Wounds Compend Clin Res Pract 22:301–310

    Google Scholar 

  37. Moore OA, Smith LA, Campbell F, Seers K, McQuay HJ, Moore RA (2001) Systematic review of the use of honey as a wound dressing. BMC Complement Altern Med 1:2

    Article  Google Scholar 

  38. Halcón L, Milkus K (2004) Staphylococcus aureus and wounds: a review of tea tree oil as a promising antimicrobial. Am J Infect Control 32:402–408

    Article  Google Scholar 

  39. Ebert D (1998) Dressing for promoting wound healing contains a viscous oily extract of cinnamon leaves. Patent DE19849017-C1

    Google Scholar 

  40. Steinhauser T, Haering L (1999) Wound dressing containing dilute solution of grapefruit flesh or seed extract, as active agent having e.g. bactericidal, antiinflammatory and healing promoting action. Patent DE19929298-A1

    Google Scholar 

  41. Liu BS, Huang TB (2010) A novel wound dressing composed of nonwoven fabric coated with chitosan and herbal extract membrane for wound healing. Polym Compos 31:1037–1046

    Google Scholar 

  42. Sen CK, Khanna S, Gordillo G, Bagchi D, Bagchi M, Roy S (2002) Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm. Ann N Y Acad Sci 957:239–249

    Article  Google Scholar 

  43. Li X, Jasti BR (2006) Design of controlled release drug delivery systems. McGraw-Hill, New York

    Google Scholar 

  44. Braga MEM, Pato MTV, Silva HSRC, Ferreira EI, Gil MH, Duarte CMM, de Sousa HC (2008) Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. J Supercrit Fluids 44:245–257

    Article  Google Scholar 

  45. Dias AMA, Braga MEM, Seabra IJ, Ferreira P, Gil MH, de Sousa HC (2011) Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int J Pharm, In Press (doi:10.1016/j.ijpharm.2011.01.063)

  46. Quirk RA, France RM, Shakesheff KM, Howdle SM (2004) Supercritical fluid technologies and tissue engineering scaffolds. Curr Opin Solid State Mater Sci 8:313–321

    Article  Google Scholar 

  47. Kikic I (2009) Polymer–supercritical fluid interactions. J Supercritical Fluids 47:458–465

    Article  Google Scholar 

  48. Kikic F, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid St Mat Sci 7:399–405

    Article  Google Scholar 

  49. Yoganathan RB, Mammucari R, Foster R (2010) Dense gas processing of polymers. Polymer Reviews 50:144–177

    Article  Google Scholar 

  50. Pereda S, Bottini SB, Brignole EA (2008) Supercritical fluid extraction of nutraceuticals and bioactive compounds: fundamentals of supercritical fluid technology. CRC Press, Boca Raton

    Google Scholar 

  51. Mukhopadhyay M (2000) Natural extracts using supercritical carbon dioxide. CRC Press, Boca Raton

    Book  Google Scholar 

  52. Darr JA, Poliakoff M (1999) New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem Rev 99:495–541

    Article  Google Scholar 

  53. Howdle SM, Watson MS, Whitaker MJ, Popv VK, Davies MC, Mandel FS, Wang JD, Shakesheff KM (2001) Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials. J Chem Soc Chem Commun 109–110

    Google Scholar 

  54. Reverchon E, Adami R, Cardea S, Della Porta G (2009) Supercritical fluids processing of polymers for pharmaceutical and medical applications. J Supercritical Fluids 47:484–492

    Article  Google Scholar 

  55. Ginty PJ, Whitaker MJ, Shakesheff KM, Howdle SM (2005) Drug delivery goes supercritical. Mater Today 8:42–48

    Article  Google Scholar 

  56. Shieh Y, Su J, Manivannan G, Lee PH, Sawan SP, Dale Spall W (1996) Interaction of supercritical carbon dioxide with polymers II. Amorphous polymers. J Appl Polym Sci 59:707–714

    Article  Google Scholar 

  57. West BL, Kazarian SG, Vincent MF, Brantley NH, Eckert CA (1998) Supercritical fluid dyeing of PMMA films with azo-dyes. J Appl Polym Sci 69:911–919

    Article  Google Scholar 

  58. Wang Y, Yang C, Tomasko D (2002) Confocal microscopy analysis of supercritical fluid impregnation of polypropylene. Ind Eng Chem Res 41:1780–1786

    Article  Google Scholar 

  59. Knox DE (2005) Solubilities in supercritical fluids. Pure Appl Chem 77:513–530

    Article  Google Scholar 

  60. Duarte ARC, Santiago S, de Sousa HC, Duarte CMM (2005) Solubility of acetazolamide in supercritical carbon dioxide in the presence of ethanol as a cosolvent. J Chem Eng Data 50:216–220

    Article  Google Scholar 

  61. Kazarian SG, Martirosyan GG (2002) Spectroscopy of polymer/drug formulations processed with supercritical fluids: in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP. Int J Pharm 232:81–90

    Article  Google Scholar 

  62. Kazarian SG, Vincent MF, West BL, Eckert CA (1998) Partitioning of solutes and cosolvents between supercritical and polymer phases. J Supercrit Fluids 13:107–112

    Article  Google Scholar 

  63. Natu MV, Gil MH, de Sousa HC (2008) Supercritical solvent impregnation of poly(-caprolactone)/poly(oxyethylene-b-oxypropylene-b-oxyethylene) and poly(-caprolactone)/ poly(ethylene-vinyl acetate) blends for controlled release applications. J Supercrit Fluids 47:93–102

    Article  Google Scholar 

  64. Costa VP, Braga MEM, Guerra JP, Duarte ARC, Duarte CMM, Leite EOB, Gil MH, de Sousa HC (2010) Development of therapeutic contact lenses using a supercritical solvent impregnation method. J Supercrit Fluids 52:306–316

    Article  Google Scholar 

  65. Costa VP, Braga MEM, Duarte CMM, Alvarez-Lorenzo C, Concheiro A, Gil MH, de Sousa HC (2010) Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation. J Supercrit Fluids 53:165–173

    Article  Google Scholar 

  66. Gong K, Viboonkiat R, Rehman IU, Buckton G, Darr JA (2005) Formation and characterization of porous indomethacin-PVP coprecipitates prepared using solvent-free supercritical fluid processing. J Pharm Sci 94:2583–2590

    Article  Google Scholar 

  67. Gong K, Darr JA, Rehman IU (2006) Supercritical fluid assisted impregnation of indomethacin into chitosan thermosets for controlled release applications. Int J Pharm 315:93–98

    Article  Google Scholar 

  68. Manna L, Banchero M, Sola D, Ferri A, Ronchetti S, Sicardi S (2007) Impregnation of PVP microparticles with ketoprofen in the presence of supercritical CO2. J Supercrit Fluids 42:378–384

    Article  Google Scholar 

  69. Gong K, Rehman IU, Darr JA (2007) Synthesis of poly(sebacic anhydride)-indomethacin controlled release composites via supercritical carbon dioxide assisted impregnation. Int J Pharm 338:191–197

    Article  Google Scholar 

  70. Gong K, Braden M, Patel MP, Rehman IU, Zhang Z, Darr JA (2007) Controlled release of chlorhexidine diacetate from a porous methacrylate system: supercritical fluid assisted foaming and impregnation. J Pharm Sci 96:2048–2056

    Article  Google Scholar 

  71. Gong K, Rehman IU, Darr JA (2008) Characterization and drug release investigation of amorphous drug–hydroxypropyl methylcellulose composites made via supercritical carbon dioxide assisted impregnation. J Pharmaceut Biomed Anal 48:1112–1119

    Article  Google Scholar 

  72. Banchero M, Manna L, Ronchetti S, Campanelli P, Ferri A (2009) Supercritical solvent impregnation of piroxicam on PVP at various polymer molecular weights. J Supercrit Fluids 49:271–278

    Article  Google Scholar 

  73. Lopez-Periago A, Argemi A, Andanson JM, Fernandez V, Garcia-Gonzalez CA, Kazarian SG, Saurina J, Domingo C (2009) Impregnation of a biocompatible polymer aided by supercritical CO2: evaluation of drug stability and drug–matrix interactions. J Supercrit Fluids 48:56–63

    Article  Google Scholar 

  74. Cabodi M, Cross V, Qu Z, Havenstrite KL, Schwartz S, Stroock AD (2006) An active wound dressing for controlled convective mass transfer with the wound bed. J Biom Mat Res Part B 13:210–220

    Google Scholar 

  75. Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39:639–644

    Article  Google Scholar 

  76. Alvarez M, Zarelli VEP, Pappano NB, Debattista NB (2004) Bacteriostatic action on synthetic polyhydroxylates chalcones against escherichia coli. Biocell 28:31–34

    Google Scholar 

  77. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    Google Scholar 

  78. Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–10

    Article  Google Scholar 

  79. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 582:325–337

    Article  Google Scholar 

  80. Pace-Asciak CR, Hahn S, Diamandis EP (1995) The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta 235:207–219

    Article  Google Scholar 

  81. Saija A, Scalese M, Lanza M (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486

    Article  Google Scholar 

  82. Miller AL (1996) Antioxidant flavonoids: structure, function and clinical usage. Altern Med Rev 1:103–111

    Google Scholar 

  83. Kuhlmann MK, Burkhardt G, Horsch E (1998) Inhibition of oxidant-induced lipid peroxidation in cultured renal tubular epithelial cells (LLC-PK1) by quercetin. Free Radic Res 29:451–460

    Article  Google Scholar 

  84. O’Reilly JD, Sanders TA, Wiseman H (2000) Flavonoids protect against oxidative damage to LDL in vitro: use in selection of a flavonoid rich diet and relevance to LDL oxidation resistance ex vivo? Free Radic Res 33:419–426

    Article  Google Scholar 

  85. Raso GM, Meli R, Di Carlo G (2001) Inhibition of inducible nitric oxide synthase and cyclooxygenase 2 expression by flavonoids in macrophage J774A.1. Life Sci 68:921–931

    Article  Google Scholar 

  86. Kaul TN, Middleton E Jr, Ogra PL (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15:71–79

    Article  Google Scholar 

  87. Zhang Y, Yang Y, Tang K, Hu X, Zou G (2008) Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J Appl Polym Sci 107:891–897

    Article  Google Scholar 

  88. Gugler R, Leschik M, Dengler HJ (1975) Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol 9:229–234

    Article  Google Scholar 

  89. Manach C, Regerat F, Texier O (1996) Bioavailability, metabolism and physiological impact of 4-oxoflavonoids. Nutr Res 16:517–534

    Article  Google Scholar 

  90. Casagrande R, Georetti SR, Verri WA Jr, Borin MF, Lopez RFV, Fonseca MJV (2007) In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity. Int J Pharm 328:183–190

    Article  Google Scholar 

  91. Olivella MS, Lhez L, Pappano NB, Debattista NB (2007) Effects of dimethylformamide and L-menthol permeation enhancers on transdermal delivery of quercetin. Pharm Dev Tech 12:481–484

    Article  Google Scholar 

  92. Sunil TK, Narishetty RP (2005) Effect of l-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J Control Release 102:59–70

    Article  Google Scholar 

  93. Chantasart D, Kevin LS (2010) Relationship between the enhancement effects of chemical permeation enhancers on the lipoidal transport pathway across human skin under the symmetric and asymmetric conditions in vitro. Pharm Res 27:1825–1836

    Article  Google Scholar 

  94. Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. British J Pharmacol 140:1363–1372

    Article  Google Scholar 

  95. Braga PC, Sasso MD, Culici M, Bianchi T, Bordoni L, Marabini L (2006) Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacol 77:130–136

    Article  Google Scholar 

  96. Nobile MA, Di Benedetto N, Suriano N, Conte A, Lamacchia C, Corbo MR, Sinigaglia M (2009) Use of natural compounds to improve the microbial stability of Amaranth-based homemade fresh pasta. Food Microbiol 26:151–156

    Article  Google Scholar 

  97. Hu Y, Du Y, Wang X, Feng T (2009) Self-aggregation of water-soluble chitosan and solubilization of thymol as an antimicrobial agent. J Biomed Mater Res 90A:874–881

    Article  Google Scholar 

  98. Fleming OS, Kazarian SC (2005) Polymer processing with supercritical fluids. In: Kemmere MF, Meyer T (eds) Supercritical carbon dioxide: in polymer reaction engineering. Wiley, Weinheim, pp 205–234

    Google Scholar 

  99. Xia Y, Guo T, Zhao H, Song H, Song M, Zhang B, Zhang B (2007) A novel solid phase for selective separation of flavonoid compounds. J Sep Sci 30:1300–1306

    Article  Google Scholar 

  100. Pasanphan W, Chirachanchai S (2008) Conjugation of gallic acid onto chitosan: an approach for green and water-based antioxidant. Carbohydr Polym 72:169–177

    Article  Google Scholar 

  101. Hammerschmidt PA, Pratt DE (1978) Phenolic antioxidants of dried soybeans. J Food Sci 43:556–559

    Article  Google Scholar 

  102. Braga MEM, Leal PF, Carvalho JE, Meireles MAA (2003) Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 51:6604–6611

    Article  Google Scholar 

  103. Weller CD (2009) Interactive dressings and their role in moist wound healing. In: Rajendran S (ed) Advanced textiles for would care. Woodhead, Cambridge, UK, pp 97–111

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. A. Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dias, A.M.A., Braga, M.E.M., Seabra, I.J., de Sousa, H.C. (2012). Supercritical Solvent Impregnation of Natural Bioactive Compounds in N-Carboxybutylchitosan and Agarose Membranes for the Development of Topical Wound Healing Applications. In: Natal Jorge, R., Tavares, J., Pinotti Barbosa, M., Slade, A. (eds) Technologies for Medical Sciences. Lecture Notes in Computational Vision and Biomechanics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4068-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4068-6_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4067-9

  • Online ISBN: 978-94-007-4068-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics