Skip to main content

Algebraic Flux Correction III

Incompressible Flow Problems

  • Chapter
Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 2036 Accesses

Abstract

This chapter illustrates the use of algebraic flux correction in the context of finite element methods for the incompressible Navier-Stokes equations and related models. In the convection-dominated flow regime, nonlinear stability is enforced using algebraic flux correction. The numerical treatment of the incompressibility constraint is based on the ‘Multilevel Pressure Schur Complement’ (MPSC) approach. This class of iterative methods for discrete saddle-point problems unites fractional-step/operator-splitting methods and strongly coupled solution techniques. The implementation of implicit high-resolution schemes for incompressible flow problems requires the use of efficient Newton-like methods and optimized multigrid solvers for linear systems. The coupling of the Navier-Stokes system with scalar conservation laws is also discussed in this chapter. The applications to be considered include the Boussinesq model of natural convection, the kε turbulence model, population balance equations for disperse two-phase flows, and level set methods for free interfaces. A brief description of the numerical algorithm is given for each problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88, 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth, T.J., Sethian, A.: Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145, 1–40 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bayraktar, E., Mierka, O., Platte, F., Kuzmin, D., Turek, S.: Numerical aspects and implementation of population balance equations coupled with turbulent fluid dynamics. Comput. Chem. Eng. (2011). doi:10.1016/j.compchemeng.2011.04.001

    Google Scholar 

  4. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Buwa, V.V., Ranade, V.V.: Dynamics of gas-liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations. Chem. Eng. Sci. 57, 4715–4736 (2002)

    Article  Google Scholar 

  6. CFD benchmarking site. http://www.featflow.de/en/benchmarks/cfdbenchmarking

  7. Chien, K.-Y.: Predictions of channel and boundary-layer flows with a low-Reynolds number turbulence model. AIAA J. 20, 33–38 (1982)

    Article  ADS  MATH  Google Scholar 

  8. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christon, M.A., Gresho, P.M., Sutton, S.B.: Computational predictability of natural convection flows in enclosures. In: Bathe, K.J. (ed.) Proc. First MIT Conference on Computational Fluid and Solid Mechanics, pp. 1465–1468. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  10. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Dover, New York (2005)

    Google Scholar 

  11. Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO R–3, 77–104 (1973)

    Google Scholar 

  12. Damanik, H.: Monolithic FEM techniques for viscoelastic fluids. PhD thesis, TU Dortmund (2011)

    Google Scholar 

  13. Damanik, H., Hron, J., Ouazzi, A., Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models. Int. J. Numer. Methods Fluids (2012). doi:10.1002/fld.3656

    Google Scholar 

  14. Di Pietro, D.A., Lo Forte, S., Parolini, N.: Mass preserving finite element implementations of the level set method. Appl. Numer. Math. 56, 1179–1195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donea, J., Giuliani, S., Laval, H., Quartapelle, L.: Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. Comput. Methods Appl. Mech. Eng. 30, 53–73 (1982)

    Article  ADS  MATH  Google Scholar 

  16. Engelman, M.S., Haroutunian, V., Hasbani, I.: Segregated finite element algorithms for the numerical solution of large–scale incompressible flow problems. Int. J. Numer. Methods Fluids 17, 323–348 (1993)

    Article  MATH  Google Scholar 

  17. Engelman, M.S., Sani, R.L., Gresho, P.M.: The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. Int. J. Numer. Methods Fluids 2, 225–238 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Galdi, G., Rannacher, R., Robertson, A., Turek, S.: Hemodynamical Flows: Modelling, Analysis and Simulation. WS-Oberwolfach Seminars. Birkhäuser, Basel (2008). ISBN: 978-3-7643-7805-9

    Google Scholar 

  19. Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., Turek, S.: Towards a complete FEM-based simulation toolkit on GPUs: unstructured grid finite element geometric multigrid solvers with strong smoothers based on sparse approximated inverses. Comp. Fluids (2012). doi:10.1016/j.compfluid.2012.01.025. Special issue ParCFD’11

    Google Scholar 

  20. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  21. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Numerical Methods for Fluids (Part 3). Handbook of Numerical Analysis, vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  22. Gresho, P.M., Sani, R.L., Engelman, M.S.: Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow. Wiley, New York (1998)

    MATH  Google Scholar 

  23. Gresho, P.M.: On the theory of semi–implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, Part 1: Theory, Part 2: Implementation. Int. J. Numer. Methods Fluids 11, 587–659 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Grooss, J., Hesthaven, J.S.: A level set discontinuous Galerkin method for free surface flows. Comput. Methods Appl. Mech. Eng. 195, 3406–3429 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Grotjans, H., Menter, F.: Wall functions for general application CFD codes. In: ECCOMAS 98, Proceedings of the 4th Computational Fluid Dynamics Conference, pp. 1112–1117. Wiley, New York (1998)

    Google Scholar 

  26. Hackbusch, W., John, V., Khachatryan, A., Suciu, C.: A numerical method for the simulation of an aggregation-driven population balance system. Int. J. Numer. Methods Fluids (2011). doi:10.1002/fld.2656

    MATH  Google Scholar 

  27. Hu, B., Matar, O.K., Hewitt, G.F., Angeli, P.: Population balance modelling of phase inversion in liquid-liquid pipeline flows. Chem. Eng. Sci. 61, 4994–4997 (2006)

    Article  Google Scholar 

  28. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Hysing, S.: A new implicit surface tension implementation for interfacial flows. Int. J. Numer. Methods Fluids 51, 659–672 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Hysing, S.: Numerical simulation of immiscible fluids with FEM level set techniques. PhD thesis, TU Dortmund (2007)

    Google Scholar 

  31. Hysing, S., Turek, S.: The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids. In: Proceedings of Algoritmy, pp. 22–31 (2005)

    Google Scholar 

  32. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60, 1259–1288 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Ilinca, F., Hétu, J.-F., Pelletier, D.: A unified finite element algorithm for two-equation models of turbulence. Comput. Fluids 27, 291–310 (1998)

    Article  MATH  Google Scholar 

  34. John, V., Roland, M.: On the impact of the scheme for solving the higher-dimensional equation in coupled population balance systems. Int. J. Numer. Methods Eng. 82, 1450–1474 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Kim, J.: Investigation of separation and reattachment of a turbulent shear layer: flow over a backward facing step. PhD thesis, Stanford University (1978)

    Google Scholar 

  36. Kim, J., Moin, P., Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  ADS  MATH  Google Scholar 

  37. Kohno, H., Tanahashi, T.: Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement. Int. J. Numer. Methods Fluids 45, 921–944 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Kuzmin, D.: Algebraic flux correction I. Scalar conservation laws. Chap. 6 in this book. doi:10.1007/978-94-007-4038-9_6

  39. Kuzmin, D., Basting, C., Bänsch, E.: The Lagrange multiplier approach to maintaining the distance function property in level set algorithms. In preparation

    Google Scholar 

  40. Kuzmin, D., Möller, M., Gurris, M.: Algebraic flux correction II. Compressible Flow Problems. Chap. 7 in this book. doi:10.1007/978-94-007-4038-9_7

  41. Kuzmin, D., Mierka, O., Turek, S.: On the implementation of the kε turbulence model in incompressible flow solvers based on a finite element discretization. Int. J. Comput. Sci. Math. 1, 193–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kuzmin, D., Turek, S.: Multidimensional FEM-TVD paradigm for convection-dominated flows. In: Proceedings of the IV European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), vol. II (2004). ISBN:951-39-1869-6

    Google Scholar 

  43. Kuzmin, D., Turek, S.: Numerical simulation of turbulent bubbly flows. In: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, September 22–24, 2004

    Google Scholar 

  44. Lehr, F., Mewes, D.: A transport equation for interfacial area density applied to bubble columns. Chem. Eng. Sci. 56, 1159–1166 (2001)

    Article  Google Scholar 

  45. Lehr, F., Millies, M., Mewes, D.: Bubble size distribution and flow fields in bubble columns. AIChE J. 48, 2426–2442 (2002)

    Article  Google Scholar 

  46. Lesage, A.-C., Dervieux, A.: Conservation correction by dual level set. INRIA Report 7089 (November 2009)

    Google Scholar 

  47. Lew, A.J., Buscaglia, G.C., Carrica, P.M.: A note on the numerical treatment of the k-epsilon turbulence model. Int. J. Comput. Fluid Dyn. 14, 201–209 (2001)

    Article  MATH  Google Scholar 

  48. Lo, S.: Application of the MUSIG model to bubbly flows. AEAT-1096, AEA Technology (1996)

    Google Scholar 

  49. Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.-F.: A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys. 225, 949–974 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Mohammadi, B., Pironneau, O.: Analysis of the k–Epsilon Turbulence Model. Wiley, New York (1994)

    Google Scholar 

  51. Münster, R., Mierka, O., Turek, S.: Finite element-fictitious boundary methods (FEM-FBM) for 3D particulate flow. Int. J. Numer. Methods Fluids (2011). doi:10.1002/fld.2558

    Google Scholar 

  52. Nagrath, S.: Adaptive stabilized finite element analysis of multi-phase flows using level set approach. PhD Thesis, Rensselaer Polytechnic Institute, New York (2004)

    Google Scholar 

  53. Nourgaliev, R.R., Wiri, S., Dinh, N.T., Theofanous, T.G.: On improving mass conservation of level set by reducing spatial discretization errors. Int. J. Multiph. Flow 31, 1329–1336 (2005)

    Article  MATH  Google Scholar 

  54. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    MATH  Google Scholar 

  56. Ouazzi, A.: Finite element simulation of nonlinear fluids with application to granular material and powder. PhD thesis, TU Dortmund (2005)

    Google Scholar 

  57. Parolini, N.: Computational fluid dynamics for naval engineering problems. PhD thesis, EPFL Lausanne (2004)

    Google Scholar 

  58. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  59. Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Advances in Numerical Mathematics. Teubner, Stuttgart (1997)

    MATH  Google Scholar 

  60. Quartapelle, L.: Numerical Solution of the Incompressible Navier-Stokes Equations. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  61. Rama Rao, N.V., Baird, M.H.I., Hrymak, A.N., Wood, P.E.: Dispersion of high-viscosity liquid-liquid systems by flow through SMX static mixer elements. Chem. Eng. Sci. 62, 6885–6896 (2007)

    Article  Google Scholar 

  62. Rannacher, R., Turek, S.: A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8, 97–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  63. Schäfer, M., Turek, S. (with support of F. Durst, E. Krause, R. Rannacher): Benchmark computations of laminar flow around cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 52, pp. 547–566. Vieweg, Wiesbaden (1996)

    Chapter  Google Scholar 

  64. Schmachtel, R.: Robuste lineare und nichtlineare Lösungsverfahren für die inkompressiblen Navier-Stokes-Gleichungen. PhD thesis, University of Dortmund (2003)

    Google Scholar 

  65. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93(4), 1591–1595 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  67. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  68. Smolianski, A.: Numerical modeling of two-fluid interfacial flows. PhD thesis, University of Jyväskylä (2001)

    Google Scholar 

  69. Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. Ergebnisber. Angew. Math. 417, TU Dortmund (2010)

    Google Scholar 

  70. Sussman, M., Ohta, P.M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31, 2447–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Sussman, M., Puckett, E.G.: A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  ADS  MATH  Google Scholar 

  73. Thakur, R.K., Vial, Ch., Nigam, K.D.P., Nauman, E.B., Djelveh, G.: Static mixers in the process industries—A review. Trans. IChemE 81, 787–826 (2003)

    Article  Google Scholar 

  74. Thangam, S., Speziale, C.G.: Turbulent flow past a backward-facing step: a critical evaluation of two-equation models. AIAA J. 30, 1314–1320 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  75. Tornberg, A.-K.: Interface tracking methods with applications to multiphase flows. PhD thesis, Royal Institute of Technology, Stockholm (2000)

    Google Scholar 

  76. Tsai, Y.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  77. Turek, S.: On discrete projection methods for the incompressible Navier-Stokes equations: An algorithmical approach. Comput. Methods Appl. Mech. Eng. 143, 271–288 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  79. Turek, S., et al.: FEATFLOW: finite element software for the incompressible Navier-Stokes equations. User manual, University of Dortmund (2000). http://www.featflow.de

  80. Turek, S., Becker, C., Kilian, S.: Hardware-oriented numerics and concepts for PDE software. Future 1095, 1–23 (2003)

    Google Scholar 

  81. Turek, S., Becker, C., Kilian, S.: Some concepts of the software package FEAST. In: Palma, J.M., Dongarra, J., Hernandes, V. (eds.) VECPAR’98—Third International Conference for Vector and Parallel Processing. Lecture Notes in Computer Science. Springer, Berlin (1999)

    Google Scholar 

  82. Turek, S., Göddeke, D., Buijssen, S., Wobker, H.: Hardware-oriented multigrid finite element solvers on (GPU)-accelerated clusters. In: Kurzak, J., Bader, D.A., Dongarra, J. (eds.) Scientific Computing with Multicore and Accelerators, pp. 113–130. CRC Press, Boca Raton (2010). Chap. 6

    Chapter  Google Scholar 

  83. Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M.: Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches. In: Bungartz, H.-J., Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II: Modelling, Simulation, Optimization. Lecture Notes in Computational Science and Engineering, vol. 73, pp. 413–424. Springer, Berlin (2010)

    Chapter  Google Scholar 

  84. Turek, S., Kilian, S.: An example for parallel ScaRC and its application to the incompressible Navier-Stokes equations. In: Proc. ENUMATH’97. World Scientific, Singapore (1998)

    Google Scholar 

  85. Turek, S., Mierka, O., Hysing, S., Kuzmin, D.: Numerical study of a high order 3D FEM-level set approach for immiscible flow simulation. Submitted to Proceedings of the ECCOMAS Thematic Conference on Computational Analysis and Optimization (June 9–11, 2011, Jyväskylä, Finland)

    Google Scholar 

  86. Turek, S., Ouazzi, A.: Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations. J. Numer. Math. 15, 299–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  87. Turek, S., Schmachtel, R.: Fully coupled and operator-splitting approaches for natural convection. Int. J. Numer. Methods Fluids 40, 1109–1119 (2002)

    Article  ADS  MATH  Google Scholar 

  88. van der Pijl, S.P., Segal, A., Vuik, C.: A mass-conserving level-set method for modelling of multi-phase flows. Int. J. Numer. Methods Fluids 47, 339–361 (2005)

    Article  MATH  Google Scholar 

  89. Van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford (1982)

    Google Scholar 

  90. Vanka, S.P.: Implicit multigrid solutions of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  91. Van Kan, J.: A second-order accurate pressure–correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986)

    Article  MATH  Google Scholar 

  92. Van Sint Annaland, M.S., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci. 60, 2999–3011 (2005)

    Article  Google Scholar 

  93. Ville, L., Silva, L., Coupez, T.: Convected level set method for the numerical simulation of fluid buckling. Int. J. Numer. Methods Fluids 66, 324–344 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shu-Ren Hysing, Otto Mierka, and Evren Bayraktar (TU Dortmund) for contributing their results. The collaboration with Prof. Peter Walzel (TU Dortmund) and Sulzer Chemtech Ltd is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Turek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Turek, S., Kuzmin, D. (2012). Algebraic Flux Correction III. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4038-9_8

Download citation

Publish with us

Policies and ethics