Skip to main content

40 Years of FCT: Status and Directions

  • Chapter
Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

A somewhat historical perspective of the use of FCT for fluid dynamics is given. The particular emphasis is on large-scale blast problems. A comparison with other high-resolution CFD solvers is included to highlight the differences between them, as well as the relative cost. Results from test runs, as well as several relevant production runs are shown. Outstanding issues that deserve further investigation are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum, J.D., Löhner, R.: Numerical simulation of shock interaction with a modern main battlefield tank. AIAA-91-1666 (1991)

    Google Scholar 

  2. Baum, J.D., Luo, H., Löhner, R.: Numerical simulation of a blast inside a Boeing 747. AIAA-93-3091 (1993)

    Google Scholar 

  3. Baum, J.D., Löhner, R.: Numerical simulation of shock-box interaction using an adaptive finite element scheme. AIAA J. 32(4), 682–692 (1994)

    Article  ADS  Google Scholar 

  4. Baum, J.D., Luo, H., Löhner, R.: Numerical simulation of blast in the World Trade Center. AIAA-95-0085 (1995)

    Google Scholar 

  5. Baum, J.D., Luo, H., Löhner, R.: Validation of a New ALE, Adaptive unstructured moving body methodology for multi-store ejection simulations. AIAA-95-1792 (1995)

    Google Scholar 

  6. Baum, J.D., Luo, H., Löhner, R., Yang, C., Pelessone, D., Charman, C.: A coupled fluid/structure modeling of shock interaction with a truck. AIAA-96-0795 (1996)

    Google Scholar 

  7. Billey, V., Périaux, J., Perrier, P., Stoufflet, B.: 2-D and 3-D Euler computations with finite element methods in aerodynamic. In: International Conference on Hypersonic Problems, Saint-Etienne, Jan. 13–17 (1986)

    Google Scholar 

  8. Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport. II. Generalizations of the method. J. Comput. Phys. 18, 248–283 (1975)

    Article  ADS  MATH  Google Scholar 

  9. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  ADS  MATH  Google Scholar 

  10. Boris, J.P., Book, D.L.: Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20, 397–431 (1976)

    Article  ADS  MATH  Google Scholar 

  11. Colella, P.: Multidimensional upwind methods for hyperbolic conservation laws. Preprint LBL-17023 (1983)

    Google Scholar 

  12. de Fainchtein, R., Zalesak, S.T., Löhner, R., Spicer, D.S.: Finite element simulation of a turbulent MHD system: comparison to a pseudo-spectral simulation. Comput. Phys. Commun. 86, 25–39 (1995)

    Article  ADS  MATH  Google Scholar 

  13. Fry, M.A., Book, D.L.: Adaptation of flux-corrected transport codes for modelling dusty flows. In: Archer, R.D., Milton, B.E. (eds.) Proc. 14th Int.Symp. on Shock Tubes and Waves, New South Wales University Press, Sydney (1983)

    Google Scholar 

  14. Fyfe, D.E., Gardner, J.H., Picone, M., Fry, M.A.: In: Fast Three-Dimensional Flux-Corrected Transport Code for Highly Resolved Compressible Flow Calculations. Springer Lecture Notes in Physics, vol. 218, pp. 230–234. Springer, Berlin (1985)

    Google Scholar 

  15. Godunov, S.K.: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–306 (1959)

    MathSciNet  Google Scholar 

  16. Goodman, J.B., LeVeque, R.J.: On the accuracy of stable schemes for 2D scalar conservation laws. Math. Comput. 45, 15–21 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Harten, A., Zwaas, G.: Self-adjusting hybrid schemes for shock computations. J. Comput. Phys. 6, 568–583 (1972)

    Article  ADS  Google Scholar 

  18. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Hirsch, C.: Numerical Computation of Internal and External Flow. Wiley, New York (1991)

    Google Scholar 

  20. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA-81-1259 (1981)

    Google Scholar 

  21. Kuzmin, D.: Positive finite element schemes based on the flux-corrected transport procedure. In: Computational Fluid and Solid Mechanics, pp. 887–888. Amsterdam, Elsevier (2001)

    Chapter  Google Scholar 

  22. Kuzmin, D., Turek, S.: Explicit and implicit high-resolution finite element schemes based on the flux-corrected-transport algorithm. In: Brezzi, F., et al. (eds.) Proc. 4th European Conf. Num. Math. and Advanced Appl, pp. 133–143. Springer, Berlin (2002)

    Google Scholar 

  23. Kuzmin, D., Turek, S.: Flux correction tools for finite elements. J. Comput. Phys. 175, 525–558 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Kuzmin, D., Möller, M., Turek, S.: Multidimensional FEM-FCT schemes for arbitrary time-stepping. Int. J. Numer. Methods Fluids 42, 265–295 (2003)

    Article  ADS  MATH  Google Scholar 

  25. Kuzmin, D., Löhner, R., Turek, S. (eds.): Flux-Corrected Transport. Springer, Berlin (2005)

    MATH  Google Scholar 

  26. Liu, J., Kailasanath, K., Ramamurti, R., Munday, D., Gutmark, E., Löhner, R.: Large-eddy simulations of a supersonic jet and its near-field acoustic properties. AIAA J. 47(8), 1849–1864 (2009)

    Article  ADS  Google Scholar 

  27. Löhner, R., Morgan, K., Peraire, J.: A simple extension to multidimensional problems of the artificial viscosity due to lapidus. Commun. Appl. Numer. Methods 1, 141–147 (1985)

    Article  MATH  Google Scholar 

  28. Löhner, R., Morgan, K., Peraire, J., Vahdati, M.: Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 7, 1093–1109 (1987)

    Article  MATH  Google Scholar 

  29. Löhner, R., Morgan, K., Vahdati, M., Boris, J.P., Book, D.L.: FEM-FCT: combining unstructured grids with high resolution. Commun. Appl. Numer. Methods 4, 717–730 (1988)

    Article  MATH  Google Scholar 

  30. Löhner, R., Baum, J.D.: Adaptive h-refinement on 3-D unstructured grids for transient problems. Int. J. Numer. Methods Fluids 14, 1407–1419 (1992)

    Article  MATH  Google Scholar 

  31. Löhner, R., Yang, Chi, Baum, J.D., Luo, H., Pelessone, D., Charman, C.: The numerical simulation of strongly unsteady flows with hundreds of moving bodies. Int. J. Numer. Methods Fluids 31, 113–120 (1999)

    Article  MATH  Google Scholar 

  32. Löhner, R.: Applied CFD Techniques. Wiley, New York (2001)

    Google Scholar 

  33. Löhner, R., Baum, J.D., Mestreau, E.L., Sharov, D., Charman, Ch., Pelessone, D.: Adaptive embedded unstructured grid methods. AIAA-03-1116 (2003)

    Google Scholar 

  34. Luo, H., Baum, J.D., Löhner, R., Cabello, J.: Adaptive edge-based finite element schemes for the Euler and Navier-Stokes equations. AIAA-93-0336 (1993)

    Google Scholar 

  35. Luo, H., Baum, J.D., Löhner, R.: Edge-based finite element scheme for the Euler equations. AIAA J. 32(6), 1183–1190 (1994)

    Article  ADS  MATH  Google Scholar 

  36. Mavriplis, D.: Three-dimensional unstructured multigrid for the Euler equations. AIAA-91-1549-CP (1991)

    Google Scholar 

  37. Mestreau, E., Löhner, R., Aita, S.: TGV tunnel-entry simulations using a finite element code with automatic remeshing. AIAA-93-0890 (1993)

    Google Scholar 

  38. Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comput. 38, 339–374 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Parrott, A.K., Christie, M.A.: FCT applied to the 2-D finite element solution of tracer transport by single phase flow in a porous medium. In: Morton, K.W., Baines, M.J. (eds.) Proc. ICFD-Conf. Num. Meth. in Fluid Dyn. Academic Press, Reading (1986)

    Google Scholar 

  40. Patnaik, G., Guirguis, R.H., Boris, J.P., Oran, E.S.: A barely implicit correction for flux-corrected transport. J. Comput Phys. (1988)

    Google Scholar 

  41. Patnaik, G., Kailasanath, K., Laskey, K.J., Oran, E.S.: Detailed numerical simulations of cellular flames. In: Proc. 22nd Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1989)

    Google Scholar 

  42. Peraire, J., Peiro, J., Morgan, K.: A three-dimensional finite element multigrid solver for the Euler equations. AIAA-92-0449 (1992)

    Google Scholar 

  43. Rice, D.L., Giltrud, M.E., Baum, J.D., Luo, H., Mestreau, E.: Experimental and numerical investigation of shock diffraction about blast walls. In: Proc. 16th Int. Symp. Military Aspects of Blast and Shocks, Keble College, Oxford, UK, September 10–15 (2000)

    Google Scholar 

  44. Riemann, G.F.B.: Über die Fortpflanzung ebener Luftwellen von Endlicher Schwingungweite. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 8 (1860)

    Google Scholar 

  45. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Sivier, S., Loth, E., Baum, J.D., Löhner, R.: Vorticity produced by shock wave diffraction. Shock Waves 2, 31–41 (1992)

    Article  ADS  Google Scholar 

  47. Scannapieco, A.J., Ossakow, S.L.: Nonlinear equatorial spread F. Geophys. Res. Lett. 3, 451–454 (1976)

    Article  ADS  Google Scholar 

  48. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. van Leer, B.: Towards the ultimate conservative scheme. II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  ADS  MATH  Google Scholar 

  51. Weatherill, N.P., Hassan, O., Marchant, M.J., Marcum, D.L.: Adaptive inviscid flow solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes. AIAA-93-3390 (1993)

    Google Scholar 

  52. Whitaker, D.L., Grossman, B., Löhner, R.: Two-dimensional Euler computations on a triangular mesh using an upwind, finite-volume scheme. AIAA-89-0365 (1989)

    Google Scholar 

  53. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithm for fluids. J. Comput. Phys. 31, 335–362 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Zalesak, S.T., Löhner, R.: Minimizing numerical dissipation in modern shock capturing schemes. In: Chung, T.J., Karr, G. (eds.) Proc. 7th Int. Conf. Finite Elements in Flow Problems, Huntsville, AL, pp. 1205–1211 (1989)

    Google Scholar 

  56. Zhmakin, A.I., Fursenko, A.A.: A class of monotonic shock-capturing difference schemes. NRL Memo. Rep. 4567 (1981)

    Google Scholar 

Download references

Acknowledgements

It is our great pleasure to acknowledge the input and stimulus provided by the many colleagues with whom we had the opportunity to work over the years. In particular the teams at GMU, Swansea (Wales, UK), NRL-LCP&FD, SAIC (ATG) and NASA (LARC, GSFC). We would also like to take the opportunity to thank Cray Research, IBM and SGI for many free hours on their machines over the years. The work compiled here would not have been possible without the steady support received from such organizations as the Defense Nuclear Agency, the Defense Threat Reduction Agency and the Air Force Office of Scientific Research. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainald Löhner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Löhner, R., Baum, J.D. (2012). 40 Years of FCT: Status and Directions. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4038-9_5

Download citation

Publish with us

Policies and ethics