Skip to main content

An Evaluation of a Structured Overlapping Grid Implementation of FCT for High-Speed Flows

  • Chapter
Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 2012 Accesses

Abstract

This study considers the development and assessment of a Flux-Corrected Transport (FCT) algorithm for simulating high-speed flows on structured overlapping grids. This class of algorithm shows promise for solving some difficult highly-nonlinear problems where robustness and control of certain features, such as maintaining positive densities, is important. Complex, possibly moving, geometry is treated through the use of structured overlapping grids. Adaptive mesh refinement (AMR) is employed to ensure sharp resolution of discontinuities in an efficient manner. Improvements to the FCT algorithm are proposed for the treatment of strong rarefaction waves as well as rarefaction waves containing a sonic point. Simulation results are obtained for a set of test problems and the convergence characteristics are demonstrated and compared to a high-resolution Godunov method. The problems considered include smooth manufactured solutions, isolated shock and contact discontinuities, a modified Sod shock-tube problem, a two-shock Riemann problem, the Shu-Osher test problem, shock impingement on single cylinder, irregular Mach reflection of a strong shock striking an inclined plane, shock impingement on multiple fixed and movable cylinders, and an idealized Z-pinch implosion problem.

This work was partially supported by the DOE Office of Science, Advanced Scientific Computing Research-Applied Mathematics Program at Sandia National Laboratory under contract DE-AC04-94AL85000 and at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, M., Roe, P.L.: On postshock oscillations due to shock capturing schemes in unsteady flows. J. Comput. Phys. 130, 25–40 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  3. Baker, T.: Mesh generation for the computation of flowfields over complex aerodynamic shapes. Comput. Math. Appl. 24, 103–127 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banks, J.W., Shadid, J.N.: An Euler system source term that develops prototype z-pinch implosions intended for the evaluation of shock-hydro methods. Int. J. Numer. Methods Fluids 61, 725–751 (2009)

    Article  ADS  MATH  Google Scholar 

  5. Banks, J.W., Schwendeman, D.W., Kapila, A.K., Henshaw, W.D.: A high-resolution Godunov method for compressible multi-material flow on overlapping grids. J. Comput. Phys. 223, 262–297 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Banks, J.W., Aslam, T., Rider, W.J.: On sub-linear convergence for linearly degenerate waves in capturing schemes. J. Comput. Phys. 227(14), 6985–7002 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Banks, J.W., Henshaw, W.D., Schwendeman, D.W., Kapila, A.K.: A study of detonation propagation and diffraction with compliant confinement. Combust. Theory Model. 12(4), 769–808 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Banks, J.W., Henshaw, W.D., Shadid, J.N.: An evaluation of the FCT method for high-speed flows on structured overlapping grids. J. Comput. Phys. 228(15), 5349–5369 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bellan, P.M.: Miniconference on astrophysical jets. Phys. Plasmas 12, 058301 (2005)

    Article  ADS  Google Scholar 

  10. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  ADS  MATH  Google Scholar 

  12. Boris, J.P., Book, D.L.: Flux-corrected transport III. Minimal-error FCT algorithms. J. Comput. Phys. 20, 397–431 (1976)

    Article  ADS  MATH  Google Scholar 

  13. Boris, J.P., Book, D.L., Hain, K.: Flux-corrected transport II: Generalizations of the method. J. Comput. Phys. 18, 248–283 (1975)

    Article  ADS  MATH  Google Scholar 

  14. Cerqueira, A.H., de Gouveia Dal Pino, E.: MHD numerical simulations of proto-stellar jets. Space Sci. Rev. 107, 337–340 (2003)

    Article  ADS  Google Scholar 

  15. Chan, W.: A unified overset grid generation graphical interface and new concepts on automatic gridding around surface discontinuities. In: Proceedings of the 4th Symposium on Overset Composite Grid and Solution Technology (1998)

    Google Scholar 

  16. Chesshire, G., Henshaw, W.: Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90, 1–64 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Chittenden, J.P., Lebedev, S.V., Bland, S.N., Beg, F.N., Haines, M.G.: One-, two-, and three-dimensional modeling of the different phases of wire array z-pinch evolution. Phys. Plasmas 8(5), 2305–2314 (2001)

    Article  ADS  Google Scholar 

  18. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. DeVore, C.R.: Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics. J. Comput. Phys. 92, 142–160 (1991)

    Article  ADS  MATH  Google Scholar 

  20. Dumbser, M., Moschetta, J.-M., Gressier, J.: A matrix stability analysis of the carbuncle phenomenon. J. Comput. Phys. 197, 647–670 (2004)

    Article  ADS  MATH  Google Scholar 

  21. Foster et al.: High-energy-density laboratory astrophysics studies of jets and bow shocks. The Astrophysical Journal 634L, 77–80 (2005)

    Article  ADS  Google Scholar 

  22. Garasi, C.J., Bliss, D.E., Mehlhorn, T.A., Oliver, B.V., Robinson, A.C., Sarkisov, G.S.: Multi-dimensional high energy density physics modeling and simulation of wire array Z-pinch physics. Phys. Plasmas 11(5), 2729–2737 (2003)

    Article  ADS  Google Scholar 

  23. Greenough, J.A., Rider, W.J.: A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov. J. Comput. Phys. 196, 259–281 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Haines, M.G., Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Dangor, A.E.: The past, present and future of Z pinches. Phys. Plasmas 7(5), 1672–1680 (2000)

    Article  ADS  Google Scholar 

  25. Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws. Commun. Pure Appl. Math. 30(5), 611–638 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 25, 33–61 (1983)

    Article  MathSciNet  Google Scholar 

  27. Hedstrom, G.W.: The rate of convergence of some difference schemes. SIAM J. Numer. Anal. 5(2), 363–406 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Henshaw, W.D.: Mappings for Overture, a description of the Mapping class and documentation for many useful Mappings. Research Report UCRL-MA-132239, Lawrence Livermore National Laboratory (1998)

    Google Scholar 

  29. Henshaw, W.D.: OverBlown: A fluid flow solver for overlapping grids, reference guide. Research Report UCRL-MA-134289, Lawrence Livermore National Laboratory (1999)

    Google Scholar 

  30. Henshaw, W.D., Schwendeman, D.W.: An adaptive numerical scheme for high-speed reactive flow on overlapping grids. J. Comput. Phys. 191(2), 420–447 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Henshaw, W.D., Schwendeman, D.W.: Moving overlapping grids with adaptive mesh refinement for high-speed flow. J. Comput. Phys. 216(2), 744–779 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Henshaw, W.D., Schwendeman, D.W.: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J. Comput. Phys. 227(16), 7469–7502 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Jameson, A.: Transonic flow calculations for aircraft. In: Numerical Methods in Fluid Dynamics. Lecture Notes in Mathematics, vol. 1127, pp. 156–242. Springer, Berlin (1983)

    Chapter  Google Scholar 

  34. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In: AIAA 14th Fluid and Plasma Dynamic Conference, 1981

    Google Scholar 

  35. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Kapila, A.K., Schwendeman, D.W., Bdzil, J.B., Henshaw, W.D.: A study of detonation diffraction in the Ignition-and-Growth model. Combust. Theory Model. 11, 781–822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Karni, S., Čanić, S.: Computations of slowly moving shocks. J. Comput. Phys. 136, 132–139 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Kuzmin, D., Löhner, R., Turek, S. (eds.): Flux-Corrected Transport. Springer, Berlin (2005)

    MATH  Google Scholar 

  39. Kuzmin, D., Löhner, R., Turek, S. (eds.): Flux-Corrected Transport. Springer, Berlin (2012)

    Google Scholar 

  40. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  41. Liberman, M.A., Groot, J.S.D., Toor, A., Spielman, R.B.: Physics of High-Density Z-Pinch Plasmas. Springer, New York (1999), pp. 7–10, 19–28, 44–54, 133–163, 239–243.

    Book  Google Scholar 

  42. Matzen, M.K. et al.: Pulsed-power-driven high energy density physics and inertial confinement fusion research. Phys. Plasmas 12, 055503 (2005)

    Article  ADS  Google Scholar 

  43. Matzen, M.K.: Z pinches as intense X-ray sources for high-energy density physics applications. Phys. Plasmas 4(5), 1519–1527 (1997)

    Article  ADS  Google Scholar 

  44. National Research Council National Academies: Frontiers in High Energy Density Physics: The X-Games of Contemporary Science. Springer/National Academies Press, New York (2003), pp. 18–19, 34–119

    Google Scholar 

  45. Petersson, N.A.: Hole-cutting for three-dimensional overlapping grids. SIAM J. Sci. Comput. 21, 646–665 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 18, 555–574 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Rider, W.J., Greenough, J.A., Kamm, J.R.: Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizations. J. Comput. Phys. 225, 1827–1848 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Roy, C.J.: Grid convergence error analysis for mixed-order numerical schemes. AIAA J. 41(4), 595–604 (2003)

    Article  ADS  Google Scholar 

  50. Lebedev, S.V. et al.: Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. The Astrophysical Journal 564, 113–119 (2002)

    Article  ADS  Google Scholar 

  51. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Stygar, W.A., Ives, H.C., Fehl, D.L., Cuneo, M.E., Mazarakis, M.G., Bailey, J.E., Bennett, G.R., Bliss, D.E., Chandler, G.A., Leeper, R.J., Matzen, M.K., McDaniel, D.H., McGurn, J.S., McKenney, J.L., Mix, L.P., Muron, D.J., Porter, J.L., Ramirez, J.J., Ruggles, L.E., Seamen, J.F., Simpson, W.W., Speas, C.S., Spielman, R.B., Struve, K.W., Torres, J.A., Vesey, R.A., Wagoner, T.C.: X-ray emission from z pinches at 107 A: Current scaling, gap closure, and shot-to-shot fluctuations. Phys. Rev. E 69(4), 046403 (2004). doi:10.1103/PhysRevE.69.046403

    Article  ADS  Google Scholar 

  53. Gardiner, T.A. et al.: MHD models and laboratory experiments of jets. Astrophys. Space Sci. 287, 69–74 (2003)

    Article  ADS  Google Scholar 

  54. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1999)

    MATH  Google Scholar 

  55. Tóth, G., Odstrcil, D.: Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128(1), 82–100 (1996)

    Article  ADS  MATH  Google Scholar 

  56. Van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford (1982)

    Google Scholar 

  57. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  58. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Zalesak, S.T.: The design of flux-corrected transport (FCT) algorithms on structured grids. PhD thesis, George Mason University (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Banks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Banks, J.W., Shadid, J.N. (2012). An Evaluation of a Structured Overlapping Grid Implementation of FCT for High-Speed Flows. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4038-9_11

Download citation

Publish with us

Policies and ethics