Applications of Ion Exchangers in Alcohol Beverage Industry

  • Cristina Lasanta
  • Juan Gómez
  • Ildefonso Caro


There are numerous applications of ion exchange process in the alcohol beverage industry. Among the most widely used techniques are, on the one hand, the use of cation exchange in acid cycle to remove potassium and stabilize wine against the sediments of potassium bitartrate crystals and, on the other hand, a mixed anion and cation-exchange treatment of wine for cation and anion removal from grape must in grape sugar production. Today, only the two aforementioned ion exchange techniques are authorized by the European Union legislation. Unlike laws in the EU, the legislation in the member countries of the World Wine Trade Group (WWTG) is less restrictive and allows the use of ion exchange in other applications. In this way, cation exchange in acid cycle is used for must/wine acidification and chelating resins for the metal removal from wine. Last but not the least, anion-exchange resins are also employed for vinegar decolourization, protein content and volatile acidity reduction, and extraction of wine compounds of commercial interest. Ion exchange treatment is a cost-effective selective process in the alcohol beverage industry, thus becoming a very attractive option nowadays.


White Wine Decolourization Efficiency Total Polyphenol Index Quaternary Ammonium Functional Group Grape Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Garino-Canina E (1953) Equilibri físico-chimici del vino e scambiatori ionici. Anuario della Stazione Enologica Sperimentale di Asti 2(4):3–13Google Scholar
  2. 2.
    Garino-Canina E (1953) L’emploi des échangeurs dions dans la technique enologique moderne. Anuario della Stazione Enologica Sperimentale di Asti 2(4):17–27Google Scholar
  3. 3.
    Díaz-Yubero F (1993) Empleo de las resinas de intercambio iónico en Enología. La Semana Vitivinícola 2441–2442(22/29):1921–1947Google Scholar
  4. 4.
    European Union (2009) Commission Regulation (EC) N 606/2009 of 10 July 2009 laying down certain detailed rules for implementing council regulation (EC) No 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions. L 193:1–59Google Scholar
  5. 5.
    European Union (2008) Council Regulation (EC) No 479/2008 of 29 April 2008 on the common organisation of the market in wine. L 148:1–61Google Scholar
  6. 6.
    OIV (2009) International code of oenological practices. OIV, Paris, 2009 IssueGoogle Scholar
  7. 7.
    WWTG (2001) Agreement on mutual acceptance of oenological practices. Accessed on 1 Feb 2011
  8. 8.
    ECFR (2010) Title 27: alcohol, tobacco and firearms PART 24-WINE. §24.248 Processes authorized for the treatment of wine, juice, and distilling material. Accessed on 26 Mar 2012
  9. 9.
    Mira H, Leite P, Ricardo-Da-Silva J, Curvelo-Garcia AS (2006) Use of ion exchange resins for tartrate wine stabilization. J Int des Sci de la Vigne et du Vin 40(4):223–246Google Scholar
  10. 10.
    Mourgues J (1993) Utilisitation des résines échangeuses d’ions. Revue des Oenologues, nº 69S:51–54Google Scholar
  11. 11.
    Hernández P, Mínguez S (1997) Utilisation des resines d’échange ionique en oenologie. Stabilisation tartrique. Rev Franc d’Oenol., nº 162:32–35Google Scholar
  12. 12.
    Brugirard A, Rochard J (1992) Prévention des précipitations tartriques. In: Aspects pratiques des traitements thermiques des vins. Bourgogne-publications, Chaintré, pp 74–105Google Scholar
  13. 13.
    Gómez Benítez J, Palacios Macías VM, Veas López R, Pérez Rodríguez L (2003) Prediction of tartrate stability of sherry wines by a conductimetric system with rapid response. Food Chem 81:457–462CrossRefGoogle Scholar
  14. 14.
    Gomez Benítez J, Palacios Macías VM, Sánchez Pazo JA, Pérez Rodríguez L (2002) Industrial development of proton exchange for tartrate stabilization of sherry wines. Eur Food Res Technol 214:418–422CrossRefGoogle Scholar
  15. 15.
    Rankine BC, Bond RD (1955) Prevention of potassium bitartrate deposition in wine by cation-exchange resins. Aust J Appl Sci 6:541–549Google Scholar
  16. 16.
    Ribereau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006) Handbook of enology, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  17. 17.
    Pompei C (1982) Grape sugar: technological aspects (production and utilization). Bulletin de l’OIV 55(611):25–52Google Scholar
  18. 18.
    Razzari F, Brambilla C, Peri C, Pompei C (1978) Grape sugar production for wines and foods. VII. Use of ionic exchange resins and synthetic decolorizing polymers in the production of grape sugar. Rivista di Viticoltura e di Enologia 31(3):105–120Google Scholar
  19. 19.
    Drysdale G, Fleet G (1988) Acetic acid bacteria in winemaking: a review. Am J Enol Viticult 39:143–154Google Scholar
  20. 20.
    Valcarcel MJ, González P, Pérez L, Asencio A, Domecq B (1990) Control de calidad del estado sanitario de la uva en la zona del jerez. Vitivinicultura, nº 5:42–49Google Scholar
  21. 21.
    O.I.V (1999) Resolution OENO 3/99 concerning chemical acidification of mustGoogle Scholar
  22. 22.
    O.I.V (2001) Resolution OENO 13/2001 concerning maximum limits for acidification of mustsGoogle Scholar
  23. 23.
    Walker T, Morris J, Threlfall R, Main G (2004) Quality, sensory and cost comparison for pH reduction of Syrah wine using ion exchange or tartaric acid. J Food Quality 27(6):483–496CrossRefGoogle Scholar
  24. 24.
    Walker T, Morris J, Threlfall R, Main G (2002) pH Modification of cynthiana wine using cationic exchange. J Agric Food Chem 50(22):6346–6352CrossRefGoogle Scholar
  25. 25.
    Palacios VM, Caro I, Pérez L (2001) Application of ion exchange techniques to industrial process of must acidification. Separ Purif Method 30(1):143–156CrossRefGoogle Scholar
  26. 26.
    Boulton R, Singleton V, Bisson L, Kunkee R (1995) Principles and practices of winemaking. Chapman and Hall, New York, pp 320–351CrossRefGoogle Scholar
  27. 27.
    Navrotsky VI, Avakiants SP (1986) La Theorie du Viellissement du Vin. In: IV Congress of Wine, Tradition, Economy and Health. O.I.V. Varna, BulgariaGoogle Scholar
  28. 28.
    Wurdig G, Woller R (1989) Chemie des wines. Ed Ulmer, StuttgartGoogle Scholar
  29. 29.
    Eder R, Screiner A, Schlager G, Wendelin S (2003) Réduction de la teneur en métaux dans les vins à l’aide de résins sélectives. Bull OIV 76:243–260Google Scholar
  30. 30.
    Cacho J, Castells JE, Esteban A, Laguna B, Sagristá N (1995) Iron, Koper, and manganese influence on wine oxidation. Am J Enol Viticult 46:380–380Google Scholar
  31. 31.
    Li H, Guo A, Wang H (2008) Mechanisms of oxidative browning of wine. Food Chem 108:1–13CrossRefGoogle Scholar
  32. 32.
    Cabrera-Vique C, Teissedre PL, Cabanis MT, Cabanis JC (2000) Manganese determination in grapes and wines from different regions of France. Am J Enol Viticult 51(2):103–107Google Scholar
  33. 33.
    Tarantola C (1963) Traitement des vins par le ferrocyanure de potassium. Annales de Technologie Agricole 12:36–41Google Scholar
  34. 34.
    Sánchez-Pineda MT, Martín López E (1997) Metales pesados en el Vino: alternativas al tratamiento con Hexacianoferrato (II) de Potasio. Alim Equip Technol 3:111–115Google Scholar
  35. 35.
    Loubser GJ, Sanderson RD (1986) The removal of copper and iron using a chelating resin. S Afr J Enol Vitic 7(1):47–51Google Scholar
  36. 36.
    Lasanta C, Caro I, Pérez L (2005) Theoretical model for ion exchange of iron (III) in chelating resins: application to metal ion removal from wine. Chem Eng Sci 60:3477–3486CrossRefGoogle Scholar
  37. 37.
    Feng M, Mei J, Hu S, Janney S, Carruthers J, Holbein B, Huber A, Kidby D (1997) Selective removal of iron from grape juice using an iron (III) chelating resin. Sep Purif Technol 11:127–135CrossRefGoogle Scholar
  38. 38.
    Palacios V, Caro I, Pérez L (2001) Application of ion exchange techniques to industrial process of metal ion removal from wine. Adsorption 7:131–138CrossRefGoogle Scholar
  39. 39.
    Benítez P, Castro R, Barroso C (2002) Removal of iron, copper and manganese from white wines trough ion exchange techniques: effects on their organoleptic characteristics and susceptibility to browning. Analitica Chimica Acta 458:197–202CrossRefGoogle Scholar
  40. 40.
    Mira H, Leite P, Catarino S, Ricardo-Da-Silva JM, Curvelo-Garcia AS (2007) Metal reduction in wine using PVI-PVP copolymer and its effects on chemical and sensory characters. Vitis 46(3):138–147Google Scholar
  41. 41.
    Minguez S, Hernández P, Gonzalo M (1996) Selective extraction of lead from wine with ionic exchange resins. In: Proceedings of the 5th symposium international Oenolologie. Tec & Doc Lavoisier, ParisGoogle Scholar
  42. 42.
    Shahidi F, Naczk M (1995) Food phenolics: sources, chemistry, effects and applications. Technomic Publishing Co, Lancaster, pp 136–149Google Scholar
  43. 43.
    Lamuela RM, Buxaderas S, Singleton VL, de la Torre MC, Lacueva CA, Ibern M (2000) Browning of Cava (sparkling wine) during aging in contact with lees due to the phenolic composition. Am J Enol Viticult 51(1):29–36Google Scholar
  44. 44.
    Achaerandio I, Güell C, López F (2002) Continuous vinegar decolourisation with exchange resins. J Food Eng 51:311–317CrossRefGoogle Scholar
  45. 45.
    Achaerandio I, Güell C, López F (2007) New approach to continuous vinegar decolourisation with exchange resins. J Food Eng 78:991–994CrossRefGoogle Scholar
  46. 46.
    Bayley FC, Berg HW (1967) Grape and wine proteins of white wine varietals. Am J Enol Viticult 17:18–32Google Scholar
  47. 47.
    Murphey JM, Spayd SE, Bewers JR (1989) Effect of grape maturation on soluble protein characteristics of Gewurztraminer and white Riesling juice and wine. Am J Enol Viticult 40:99–207Google Scholar
  48. 48.
    Moio I, Addeo F (1989) Focalizzazione isoelettrica delle protein dei mosti i dei vini. Vignevini 4:53–57Google Scholar
  49. 49.
    Dizy M, Besson L (1999) White wine protein analysis by capillary zone electrophoresis. Am J Enol Viticult 50:120–127Google Scholar
  50. 50.
    Maine-Ledoux V, Dubourdieu D (1999) An invertasa fragment responsible for improving the protein stability of dry white wine. J Sci Food Agric 79:537–543CrossRefGoogle Scholar
  51. 51.
    Santoro M (1995) Fractionation and characterization of must and wine proteins. Am J Enol Viticult 46:250–254Google Scholar
  52. 52.
    Sarmiento MR, Oliveira JC, Slatner M, Boulton RB (1999) Kinetic of the adsorption of bovine serum albumin contained in a model wine solution by non-swelling ion-exchange resins. J Food Eng 39:65–71CrossRefGoogle Scholar
  53. 53.
    Sarmiento MR, Oliveira JC, Slatner M, Boulton RB (1999) Effect of ion-exchange adsorption on the protein profiles of white wine. Food Sci Technol Int 7(3):217–224Google Scholar
  54. 54.
    Smith CR (1996) Apparatus and method for removing compounds from a solution. US Patent 5:480,665Google Scholar
  55. 55.
    Wang W, Yue J, Li H, Gao H (2008) Adsorption of procyanidins from grape wine’s sedimentation by three macroporous absorbent resins. Food Sci Technol 6:146–149Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Food TechnologyUniversity of CádizPuerto RealSpain

Personalised recommendations