Advertisement

Application of Ion Exchanger in the Separation of Whey Proteins and Lactin from Milk Whey

  • Dragana Stanic
  • Jelena Radosavljevic
  • Marija Stojadinovic
  • Tanja Cirkovic Velickovic
Chapter

Abstract

Whey disposal represents a huge obstacle for dairy industry, being costly and problematic. On the other hand, it could be used as a starting material for isolation of some components that are valuable on the market. Whey processing is not an easy operation; it requires robust techniques of high volumetric throughput with minimal pretreatment of the starting material. For this purpose, ion exchangers can be used, due to their versatility, safety, and relative cheapness. Being a mixture of acidic and basic proteins, double-step ion exchange chromatography, involving both cation and anion exchangers, must be performed to obtain highly purified whey proteins. Development of new technologies, based on ion exchange, which can provide fast and efficient whey processing, provides maximal exploitation in environmentally safe way.

In this chapter, the literature review on the usage of ion exchangers in the separation of lactin from bovine whey proteins and fractionation of bovine whey proteins will be given.

Keywords

Whey Protein Whey Protein Isolate Whey Protein Concentrate Displacement Chromatography Bovine Serum Albumin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the support of the Ministry of Science and Technological Development of the Republic of Serbia (Grant No. 172024).

References

  1. 1.
    Smithers GW, John Ballard F, Copeland AD et al (1996) New opportunities from the isolation and utilization of whey proteins. J Dairy Sci 79(8):1454–1459CrossRefGoogle Scholar
  2. 2.
    Gerberding SJ, Byers CH (1998) Preparative ion-exchange chromatography of proteins from dairy whey. J Chromatogr A 808(1–2):141–151Google Scholar
  3. 3.
    de Wit JN (1998) Nutritional and functional characteristics of whey proteins in food products. J Dairy Sci 81(3):597–608CrossRefGoogle Scholar
  4. 4.
    Hutchens TW, Magnusson JS, Yip T-T (1990) Secretory IgA, IgG, and IgM immunoglobulins isolated simultaneously from colostral whey by selective thiophilic adsorption. J Immunol Methods 128(1):89–99CrossRefGoogle Scholar
  5. 5.
    Rossano R, D’Elia A, Riccio P (2001) One-step separation from lactose: recovery and purification of major cheese-whey proteins by hydroxyapatite – a flexible procedure suitable for small- and medium-scale preparations. Protein Expres Purif 21(1):165–169CrossRefGoogle Scholar
  6. 6.
    Hobman PG (1984) Review of processes and products for utilization of lactose in deproteinated milk serum. J Dairy Sci 67(11):2630–2653CrossRefGoogle Scholar
  7. 7.
    Sienkewicz T, Riedel CL (1990) Determination of the bulk density. In: Whey and whey utilization, 2nd edn. Verlag Th. Mann, Gelsenkirchen-BuerGoogle Scholar
  8. 8.
    Yaguchi M, Rose D (1971) Chromatographic separation of milk proteins: a review. J Dairy Sci 54(12):1725–1743CrossRefGoogle Scholar
  9. 9.
    Strange ED, Malin EL, Van Hekken DL et al (1992) Chromatographic and electrophoretic methods used for analysis of milk proteins. J Chromatogr A 624(1–2):81–102Google Scholar
  10. 10.
    Monaci L, Tregoat V, van Hengel A et al (2006) Milk allergens, their characteristics and their detection in food: a review. Eur Food Res Technol 223(2):149–179CrossRefGoogle Scholar
  11. 11.
    Saufi SA, Fee CJ (2009) Fractionation of beta-lactoglobulin from whey by mixed matrix membrane ion-exchange chromatography. Biotechnol Bioeng 103(1):138–147CrossRefGoogle Scholar
  12. 12.
    El-Agamy EI (2007) The challenge of cow milk protein allergy. Small Ruminant Res 68(1):64–72CrossRefGoogle Scholar
  13. 13.
    Suutari TJ, Valkonen KH, Karttunen TJ et al (2006) IgE cross reactivity between reindeer and bovine milk beta-lactoglobulins in cow’s milk allergic patients. J Invest Allergol Clin Immunol 16(5):296–302Google Scholar
  14. 14.
    Pearce RJ, Marshall SC (1991) New ways with whey components. Aust J Dairy Technol 42(2):105–107Google Scholar
  15. 15.
    Jost R, Maire JC, Maynard F et al (1999) Aspects of whey protein usage in infant nutrition, a brief review. Int J Food Sci Technol 34(5–6):533–542CrossRefGoogle Scholar
  16. 16.
    Muller A, Chaufer B, Merin U et al (2003) Purification of alpha-lactalbumin from a prepurified acid whey: ultrafiltration or precipitation. Lait 83(6):439–451CrossRefGoogle Scholar
  17. 17.
    Maubois JL (1997) Current uses and future perspectives of microfiltration technology in the dairy industry. Int Dairy Fed Bull 320:37–40Google Scholar
  18. 18.
    Ganjam LS, Thornton WH Jr, Marshall RT et al (1997) Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells. J Dairy Sci 80(10):2325–2329CrossRefGoogle Scholar
  19. 19.
    Zydney AL (1998) Protein separations using membrane filtration: new opportunities for whey fractionation. Int Dairy J 8(3):243–250CrossRefGoogle Scholar
  20. 20.
    Wong DWS, Camirand WM, Pavlath AE et al (1996) Structures and functionalities of milk proteins. Crit Rev Food Sci 36(8):807–844CrossRefGoogle Scholar
  21. 21.
    Arnold D, Di Biase AM, Marchetti M et al (2002) Antiadenovirus activity of milk proteins: lactoferrin prevents viral infection. Antivir Res 53(2):153–158CrossRefGoogle Scholar
  22. 22.
    Baveye S, Elass E, Mazurier J et al (2005) Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med 37(3):281–286Google Scholar
  23. 23.
    Ellison RT, Giehl TJ (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88(4):1080–1091CrossRefGoogle Scholar
  24. 24.
    Arnold RR, Russell JE, Champion WJ et al (1982) Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun 35(3):792–799Google Scholar
  25. 25.
    Ellison RT, Giehl TJ, LaForce FM (1988) Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun 56(11):2774–2781Google Scholar
  26. 26.
    Chiu CK, Etzel MR (1997) Fractionation of lactoperoxidase and lactoferrin from bovine whey using a cation-exchange membrane. J Food Sci 62(5):996–1000CrossRefGoogle Scholar
  27. 27.
    van Calcar SC, MacLeod EL, Gleason ST et al (2009) Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am J Clin Nutr 89(4):1068–1077CrossRefGoogle Scholar
  28. 28.
    Francis GL, Regester GO, Webb HA et al (1995) Extraction from cheese whey by cation-exchange chromatography of factors that stimulate the growth of mammalian cells. J Dairy Sci 78(6):1209–1218CrossRefGoogle Scholar
  29. 29.
    Cox DA, Burk RR (1991) Isolation and characterisation of milk growth factor, a transforming-growth-factor-β2-related polypeptide, from bovine milk. Eur J Biochem 197(2):353–358CrossRefGoogle Scholar
  30. 30.
    Shing Y, Klagsbrun M (1987) Purification and characterization of a bovine colostrum-derived growth factor. Mol Endocrinol 5:335–338CrossRefGoogle Scholar
  31. 31.
    Sandowski Y, Peri I, Gertler A (1993) Partial purification and characterization of putative paracrine/autocrine bovine mammary epithelium growth factors. Livest Prod Sci 35(1–2):35–48CrossRefGoogle Scholar
  32. 32.
    Caessens PWJR, Visser S, Gruppen H (1997) Method for the isolation of bovine beta-lactoglobulin from a cheese whey protein fraction and physicochemical characterization of the purified product. Int Dairy J 7(4):229–235CrossRefGoogle Scholar
  33. 33.
    Konrad G, Lieske B, Faber W (2000) A large-scale isolation of native beta-lactoglobulin: characterization of physicochemical properties and comparison with other methods. Int Dairy J 10(10):713–721CrossRefGoogle Scholar
  34. 34.
    Alomirah HF, Alli I (2004) Separation and characterization of beta-lactoglobulin and alpha-lactalbumin from whey and whey protein preparations. Int Dairy J 14(5):411–419CrossRefGoogle Scholar
  35. 35.
    Lozano JM, Giraldo GI, Romero CM (2008) An improved method for isolation of beta-lactoglobulin. Int Dairy J 18(1):55–63CrossRefGoogle Scholar
  36. 36.
    Neyestani TR, Djalali M, Pezeshki M (2003) Isolation of alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin from cow’s milk using gel filtration and anion-exchange chromatography including evaluation of their antigenicity. Protein Expres Purif 29(2):202–208CrossRefGoogle Scholar
  37. 37.
    Ye XY, Yoshida S, Ng TB (2000) Isolation of lactoperoxidase, lactoferrin, alpha-lactalbumin, beta-lactoglobulin b and beta-lactoglobulin a from bovine rennet whey using ion-exchange chromatography. Int J Biochem Cell B 32(11–12):1143–1150CrossRefGoogle Scholar
  38. 38.
    Avramescu M-E, Borneman Z, Wessling M (2003) Mixed-matrix membrane adsorbers for protein separation. J Chromatogr A 1006(1–2):171–183Google Scholar
  39. 39.
    Avramescu M-E, Gironès M, Borneman Z et al (2003) Preparation of mixed matrix adsorber membranes for protein recovery. J Membr Sci 218(1–2):219–233CrossRefGoogle Scholar
  40. 40.
    Yang H, Viera C, Fischer J et al (2002) Purification of a large protein using ion-exchange membranes. Ind Eng Chem Res 41(6):1597–1602CrossRefGoogle Scholar
  41. 41.
    Felipe X, Law AJR (1997) Preparative-scale fractionation of bovine, caprine and ovine whey proteins by gel permeation chromatography. J Dairy Res 64(3):459–464CrossRefGoogle Scholar
  42. 42.
    Vyas HK, Izco JM, Jiménez-Flores R (2002) Scale-up of native [beta]-lactoglobulin affinity separation process. J Dairy Sci 85(7):1639–1645CrossRefGoogle Scholar
  43. 43.
    Akpinar-Bayizit A, Ozcan T, Yilmaz-Ersan L (2009) Membrane processes in production of functional whey components. Mljekarstvo 59(4):282–288Google Scholar
  44. 44.
    Fee CJ, Chand A (2006) Capture of lactoferrin and lactoperoxidase from raw whole milk by cation-exchange chromatography. Sep Purif Technol 48(2):143–149CrossRefGoogle Scholar
  45. 45.
    Savina IN, Galaev IY, Mattiasson B (2006) Ion-exchange macroporous hydrophilic gel monolith with grafted polymer brushes. J Mol Recognit 19(4):313–321CrossRefGoogle Scholar
  46. 46.
    Janson JC, Ryden L (1998) Protein purification. Wiley, New YorkGoogle Scholar
  47. 47.
    Etzel MR (2004) Manufacture and use of dairy protein fractions. J Nutr 134(4):996–1002Google Scholar
  48. 48.
    El-Sayed MMH, Chase HA (2010) Purification of the two major proteins from whey concentrate using a cation-exchange selective adsorption process. Biotechnol Prog 26(1):192–199Google Scholar
  49. 49.
    Hahn R, Schulz PM, Schaupp C et al (1998) Bovine whey fractionation based on cation-exchange chromatography. J Chromatogr A 795(2):277–287CrossRefGoogle Scholar
  50. 50.
    Doultani S, Turhan KN, Etzel MR (2004) Fractionation of proteins from whey using cation-exchange chromatography. Process Biochem 39(11):1737–1743CrossRefGoogle Scholar
  51. 51.
    El-Sayed MMH, Chase HA (2008) Separation of the two major whey proteins using cation-exchange adsorption. In: The world congress on engineering and computer science, San FranciscoGoogle Scholar
  52. 52.
    Vogt S, Freitag R (1997) Comparison of anion-exchange and hydroxyapatite displacement chromatography for the isolation of whey proteins. J Chromatogr A 760(1):125–137CrossRefGoogle Scholar
  53. 53.
    Fweja LWT, Lewis MJ, Grandison AS (2010) Isolation of lactoperoxidase using different cation-exchange resins by batch and column procedures. J Dairy Res 77(3):357–367CrossRefGoogle Scholar
  54. 54.
    Kalan EB, Greenberg R, Walter M et al (1964) Chemical properties of beta-lactoglobulins a, b and c. Biochem Biophys Res Commun 16(3):199–203CrossRefGoogle Scholar
  55. 55.
    Kiddy CA, Townend RE, Thatcher WW et al (1965) Beta-lactoglobulin variation in milk from individual cows. J Dairy Res 32(02):209–217CrossRefGoogle Scholar
  56. 56.
    de Jongh HHJ, Gröneveld T, de Groot J (2001) Mild isolation procedure discloses new protein structural properties of beta-lactoglobulin. J Dairy Sci 84(3):562–571CrossRefGoogle Scholar
  57. 57.
    Manji B, Hill A, Kakuda Y et al (1985) Rapid separation of milk whey proteins by anion-exchange chromatography. J Dairy Sci 68(12):3176–3179CrossRefGoogle Scholar
  58. 58.
    Turhan KN, Etzel MR (2004) Whey protein isolate and alpha-lactalbumin recovery from lactic acid whey using cation-exchange chromatography. J Food Sci 69(2):66–70Google Scholar
  59. 59.
    Gordon WG, Groves ML, Basch JJ (1963) Bovine milk “red protein”: amino acid composition and comparison with blood transferrin. Biochemistry 2(4):817–820CrossRefGoogle Scholar
  60. 60.
    Szuchet-Derechin S, Johnson P (1966) The “Albumin” fraction of bovine milk-III. The micro-heterogeneity of the red protein. Eur Polym J 2(1):29–32, 33–35CrossRefGoogle Scholar
  61. 61.
    Yoshida S, Ye X (1991) Isolation of lactoperoxidase and lactoferrins from bovine milk acid whey by carboxymethyl cation-exchange chromatography. J Dairy Sci 74(5):1439–1444CrossRefGoogle Scholar
  62. 62.
    Oram JD, Reiter B (1968) Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta Gen Subj 170(2):351–365CrossRefGoogle Scholar
  63. 63.
    Gordon VG, Groves ML, Basch JS (1963) Isolation of an iron-binding protein from cow’s milk. Biochim Biophys Acta 60:410CrossRefGoogle Scholar
  64. 64.
    Carlstrom A (1969) Lactoperoxidase. Identification of multiple forms and their interrelationships. Acta Chem Scand 23:171–175CrossRefGoogle Scholar
  65. 65.
    Groves ML (1965) Preparation of some iron-binding proteins and [alpha]-lactalbumin from bovine milk. Biochim Biophys Acta, Gen Subj 100(1):154–162CrossRefGoogle Scholar
  66. 66.
    Rombauts WA, Schroeder WA, Morrison M (1967) Bovine lactoperoxidase. Partial characterization of the further purified protein. Biochemistry 6(10):2965–2977CrossRefGoogle Scholar
  67. 67.
    Allen PZ, Morrison M (1963) Lactoperoxidase. IV. Immunological analysis of bovine lactoperoxidase preparations obtained by a simplified fractionation procedure. Arch Biochem Biophys 102(1):106–113CrossRefGoogle Scholar
  68. 68.
    Morrison M, Hultquist DE (1963) Lactoperoxidase. II. Isolation. J Biol Chem 238:2847–2860Google Scholar
  69. 69.
    Kickhofen B, Hammer DK, Scheel S (1968) Isolation and characteristics of gamma-g type immunoglobulins from bovine serum and colostrum. H-S Z Physiol Chem 349:1175–1185Google Scholar
  70. 70.
    Murphy FA, Osebold JW, Aalund O (1965) Physical heterogenity of bovine gamma-globulins: characterization of gamma-M and gamma-G globulins. Arch Biochem Biophys 112:126–133CrossRefGoogle Scholar
  71. 71.
    Groves ML, Gordon WG (1967) Isolation of a new glycoprotein-A and a gamma-globulin from individual cow milks. Biochemistry 6(8):2388–2394CrossRefGoogle Scholar
  72. 72.
    Maki Z, Kanamori M (1969) Studies on glycopeptides from a bovine immune lactoglobulin of colostrum. Eiyo To Shokuryo 22:42CrossRefGoogle Scholar
  73. 73.
    Kunz C, Lonnerdal B (1989) Human milk proteins: separation of whey proteins and their analysis by polyacrylamide gel electrophoresis, fast protein liquid chromatography (FPLC) gel filtration, and anion-exchange chromatography. Am J Clin Nutr 49(3):464–470Google Scholar
  74. 74.
    Liao AW, Rassi Z, LeMaster DM et al (1987) High performance displacement chromatography of proteins: separation beta-lactoglobulins A and B. Chromatographia 24:881–885CrossRefGoogle Scholar
  75. 75.
    Geisser A, Hendrich T, Boehm G et al (2005) Separation of lactose from human milk oligosaccharides with simulated moving bed chromatography. J Chromatogr A 1092(1):17–23CrossRefGoogle Scholar
  76. 76.
    Broughton DB, Gerhold CG (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent 2985589Google Scholar
  77. 77.
    Andersson J, Mattiasson B (2006) Simulated moving bed technology with a simplified approach for protein purification: separation of lactoperoxidase and lactoferrin from whey protein concentrate. J Chromatogr A 1107(1–2):88–95Google Scholar
  78. 78.
    Anspach FB, Johnston A, Wirth HJ et al (1989) High-performance liquid chromatography of amino acids, peptides and proteins XCII thermodynamic and kinetic investigations on rigid and soft affinity gels with varying particle and pore sizes. J Chromatogr A 476:205–225CrossRefGoogle Scholar
  79. 79.
    Heebøll-Nielsen A, Justesen SFL, Hobley TJ et al (2004) Superparamagnetic cation-exchange adsorbents for bioproduct recovery from crude process liquors by high-gradient magnetic fishing. Sep Sci Technol 39(12):2891–2914CrossRefGoogle Scholar
  80. 80.
    Heebøll-Nielsen A, Choewsmiddelberg APJ, Thomas ORT (2003) Efficient inclusion body processing using chemical extraction and high-gradient magnetic fishing. Biotechnol Prog 19(3):887–898CrossRefGoogle Scholar
  81. 81.
    Heeboll-Nielsen A, Justesen SFL, Thomas ORT (2004) Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers. J Biotechnol 113(1–3):247–262CrossRefGoogle Scholar
  82. 82.
    Hubbuch JJ, Matthiesen DB, Hobley TJ et al (2001) High-gradient magnetic separation versus expanded bed adsorption: a first principle comparison. Bioseparation 10:99–112CrossRefGoogle Scholar
  83. 83.
    Tsonev LI, Hirsh AG (2008) Theory and applications of a novel ion-exchange chromatographic technology using controlled ph gradients for separating proteins on anionic and cationic stationary phases. J Chromatogr A 1200(2):166–182CrossRefGoogle Scholar
  84. 84.
    Pessela BCC, Munilla R, Betancor L et al (2004) Ion-exchange using poorly activated supports, an easy way for purification of large proteins. J Chromatogr A 1034(1–2):155–159Google Scholar
  85. 85.
    Pessela BCC, Torres R, Batalla P et al (2006) Simple purification of immunoglobulins from whey proteins concentrate. Biotechnol Prog 22(2):590–594CrossRefGoogle Scholar
  86. 86.
    Bolivar JM, Batalla P, Mateo C et al (2010) Selective adsorption of small proteins on large-pore anion-exchangers coated with medium size proteins. Colloid Surf B Biointerfaces 78(1):140–145CrossRefGoogle Scholar
  87. 87.
    Blanc F, Bernard H, Alessandri S et al (2008) Update on optimized purification and characterization of natural milk allergens. Mol Nutr Food Res 52(S2):166–175Google Scholar
  88. 88.
    Li X, Luo ZL, Chen HB et al (2008) Isolation and antigenicity evaluation of beta-lactoglobulin from buffalo milk. Afr J Biotechnol 7(13):2258–2264Google Scholar
  89. 89.
    Schlatterer B, Baeker R, Schlatterer K (2004) Improved purification of beta-lactoglobulin from acid whey by means of ceramic hydroxyapatite chromatography with sodium fluoride as a displacer. J Chromatogr B 807(2):223–228CrossRefGoogle Scholar
  90. 90.
    Gorbunoff MJ (1984) The interaction of proteins with hydroxyapatite. I. Role of protein charge and structure. Anal Biochem 136(2):425–432CrossRefGoogle Scholar
  91. 91.
    Ng PK, Yoshitake T (2010) Purification of lactoferrin using hydroxyapatite. J Chromatogr B 878(13–14):976–980CrossRefGoogle Scholar
  92. 92.
    Dainiak MB, Kumar A, Plieva FM et al (2004) Integrated isolation of antibody fragments from microbial cell culture fluids using supermacroporous cryogels. J Chromatogr A 1045(1–2):93–98Google Scholar
  93. 93.
    Jungbauer A, Hahn R (2004) Monoliths for fast bioseparation and bioconversion and their applications in biotechnology. J Sep Sci 27(10–11):767–778CrossRefGoogle Scholar
  94. 94.
    Lozinsky V, Plieva F, Galaev I et al (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10(4):163–188CrossRefGoogle Scholar
  95. 95.
    Andrews AT, Taylor MD, Owen AJ (1985) Rapid analysis of bovine milk proteins by fast protein liquid chromatography. J Chromatogr A 348:177–185CrossRefGoogle Scholar
  96. 96.
    Gerstner JA, Hamilton R, Cramer SM (1992) Membrane chromatographic systems for high-throughput protein separations. J Chromatogr A 596(2):173–180CrossRefGoogle Scholar
  97. 97.
    Afeyan NB, Gordon NF, Mazsaroff I et al (1990) Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J Chromatogr A 519(1):1–29CrossRefGoogle Scholar
  98. 98.
    Hjerten S, Liao JL, Zhang R (1989) High-performance liquid chromatography on continuous polymer beds. J Chromatogr A 473:273–275CrossRefGoogle Scholar
  99. 99.
    Girardet JM, Saulnier F, Linden G et al (1998) Rapid separation of bovine whey proteins by membrane convective liquid chromatography, perfusion chromatography, continuous bed chromatography, and capillary electrophoresis. Lait 78(4):391–400CrossRefGoogle Scholar
  100. 100.
    Imafidon GI, Ng-Kwai-Hang K-F (1992) Isolation and purification of beta-lactoglobulin by mass ion-exchange chromatography. J Dairy Res 59(01):101–104CrossRefGoogle Scholar
  101. 101.
    Fox KK, Holsinger VH, Posati LP et al (1967) Separation of beta-lactoglobulin from other milk serum proteins by trichloroacetic acid. J Dairy Sci 50(9):1363–1367CrossRefGoogle Scholar
  102. 102.
    Billakanti JM, Fee CJ (2009) Characterization of cryogel monoliths for extraction of minor proteins from milk by cation-exchange. Biotechnol Bioeng 103(6):1155–1163CrossRefGoogle Scholar
  103. 103.
    Rodrigues AE, Loureiro JM, Chenou C et al (1995) Bioseparations with permeable particles. J Chromatogr B Biomed Sci Appl 664(1):233–240CrossRefGoogle Scholar
  104. 104.
    Couriol C, Le Quellec S, Guihard L et al (2000) Separation of acid whey proteins on the preparative scale by hyperdiffusive anion-exchange chromatography. Chromatographia 52(7–8):465–472CrossRefGoogle Scholar
  105. 105.
    Kawai T, Saito K, Lee W (2003) Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J Chromatogr B 790(1–2):131–142CrossRefGoogle Scholar
  106. 106.
    Zou H, Luo Q, Zhou D (2001) Affinity membrane chromatography for the analysis and purification of proteins. J Biochem Biophys Methods 49(1–3):199–240CrossRefGoogle Scholar
  107. 107.
    Gebauer KH, Thommes J, Kula MR (1997) Plasma protein fractionation with advanced membrane adsorbents. Biotechnol Bioeng 54(2):181–189CrossRefGoogle Scholar
  108. 108.
    Ulber R, Plate K, Weiss T et al (2001) Downstream processing of bovine lactoferrin from sweet whey. Acta Biotechnol 21(1):27–34CrossRefGoogle Scholar
  109. 109.
    Plate K, Beutel S, Buchholz H et al (2006) Isolation of bovine lactoferrin, lactoperoxidase and enzymatically prepared lactoferricin from proteolytic digestion of bovine lactoferrin using adsorptive membrane chromatography. J Chromatogr A 1117(1):81–86CrossRefGoogle Scholar
  110. 110.
    Goodall S, Grandison AS, Jauregi PJ et al (2008) Selective separation of the major whey proteins using ion-exchange membranes. J Dairy Sci 91(1):1–10CrossRefGoogle Scholar
  111. 111.
    Fuda E, Jauregi P (2006) An insight into the mechanism of protein separation by colloidal gas aphrons (CGA) generated from ionic surfactants. J Chromatogr B 843(2):317–326CrossRefGoogle Scholar
  112. 112.
    El Rassi Z, Horvath C (1986) Tandem columns and mixed-bed columns in high-performance liquid chromatography of proteins. J Chromatogr 359:255–264CrossRefGoogle Scholar
  113. 113.
    Freitag R, Splitt H, Reif OW (1996) Controlled mixed-mode interaction chromatography on membrane adsorbers. J Chromatogr A 728(1–2):129–137Google Scholar
  114. 114.
    Liu C, Bai R (2006) Preparing highly porous chitosan/cellulose acetate blend hollow fibers as adsorptive membranes: effect of polymer concentrations and coagulant compositions. J Membr Sci 279(1–2):336–346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dragana Stanic
    • 1
  • Jelena Radosavljevic
    • 1
  • Marija Stojadinovic
    • 1
  • Tanja Cirkovic Velickovic
    • 1
  1. 1.University of BelgradeBelgradeSerbia

Personalised recommendations