An Overview of ‘3d’ and ‘4f’ Metal Ions: Sorption Study with Phenolic Resins

  • J. D. Joshi


Day by day, society is in need of a variety of materials. Therefore, different types of new materials are required to fulfil the demand of the society. For the synthesis of desired material, various new processes are established, and modifications are made in old processes.

Nowadays, society is very conscious about environment-friendly relationships in atmosphere and climate change; hence, any required change in old processes and for establishing a new one with utmost care is necessary. Chemistry is playing a vital role in daily life. Various chemical industries discharge waste in the form of solid, liquid and gaseous state.

The recovery of the material from the discharge of the waste is a very difficult task, but it is necessary to remove the toxic materials from the waste.

In this chapter, the role of the absorbing material is discussed specially for ‘3d’ and ‘4f’ metal ions. Phenol-based resins can be effectively used as ion exchangers to remove metals ions from the discharge of the industries. The efficiency of the resins has been studied at various pH concentrations, time and with different electrolytes.


Resin Sample Benzophenone Moiety Tetra Ammonium Fixed Contact Time Phenolsulphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adjemian A (1994) Hydrometallurgy’ 94. Chapman & Hall, Cambridge, p 3CrossRefGoogle Scholar
  2. 2.
    Sigel H (1998) Metal ions in biological systems. Dekker, New York, p 24Google Scholar
  3. 3.
    Scheinberg IH, Morell AG (1973) Inorganic biochemistry, vol 1. Elsevier, New York, p 306Google Scholar
  4. 4.
    Walton HF, Rocklin RD (1990) Ion exchange in analytical chemistry. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Keim R (1983) Gmelin handbook of inorganic chemistry, Uranium Supplement, Catadsorption and chromatography, Springer, BerlinGoogle Scholar
  6. 6.
    Sekine T, Hasegewa Y (1977) Solvent extraction chemistry, fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Teixeira LSG, Costa ACS, Ferreira SC, Freitas MD, Carvalho MS (1999) J Braz Chem Soc 10(6):519CrossRefGoogle Scholar
  8. 8.
    Khuhawar MY, Lanjwani SN (1995) Talanta 42(12):1925CrossRefGoogle Scholar
  9. 9.
    Fujikawa Y, Sugahara M, Ikeda E, Fukui M (2002) Radioanal Nucl Chem 252(2):399CrossRefGoogle Scholar
  10. 10.
    Kumar M, Rathore DSP, Singh AK (2001) Microchim Acta 137:127CrossRefGoogle Scholar
  11. 11.
    Gladis JM, Rao TP (2002) Anal Bioanal Chem 373(8):867CrossRefGoogle Scholar
  12. 12.
    Kumar M, Rathore DPS, Singh AK (2000) Analyst 125(6):1221CrossRefGoogle Scholar
  13. 13.
    Say R, Ersoz A, Denizli A (2003) Sep Sci Technol 38(14):3431CrossRefGoogle Scholar
  14. 14.
    Draye M, Czerwinski KR (2000) Sep Sci Technol 35(8):1117CrossRefGoogle Scholar
  15. 15.
    Atia AA, Donia AM, Elwakeel KZ (2005) React Funct Polym 65(3):267CrossRefGoogle Scholar
  16. 16.
    Ebraheem KAK, Muharak MS, Al-Gharabli SI (2002) Macromol Sci Pure Appl Chem 39(3):217CrossRefGoogle Scholar
  17. 17.
    Soroushian P, Elzafraney M, Chowdhury H, Sarwar G, Aouadi F (2005) Polym Compos 26(5):679CrossRefGoogle Scholar
  18. 18.
    Say R, Garipcan B, Emir S, Patir S, Denizli A (2002) Macromol Mater Eng 287(8):539CrossRefGoogle Scholar
  19. 19.
    Denizli A, Garipcan B, Karabakan A, Say R, Emir S, Patir S (2003) Sep Pur’f Technol 30(1):3CrossRefGoogle Scholar
  20. 20.
    Malachowski L, Stair JL, Holcombe JA (2004) Pure Appl Chem 76(4):777CrossRefGoogle Scholar
  21. 21.
    Lee KH, Muraoka Y, Oshima M, Motomizu S (2004) Anal Sci 20:83Google Scholar
  22. 22.
    Lee W, Lee SE, Kim MK, Lee CH, Kim YS (2002) Bull Korean Chem Soc 23:1067CrossRefGoogle Scholar
  23. 23.
    Matsumiya H, Masai H, Terazono Y, Iki N, Miyano S (2003) Bull Chem Soc Jpn 76:133CrossRefGoogle Scholar
  24. 24.
    Banerjee D, Mondal BC, Das AK (2004) J Indian Chem Soc 81:50Google Scholar
  25. 25.
    Marsh SF, Savitra ZV, Bowen SMJ (1995) Radional Nucl Chem 194:117CrossRefGoogle Scholar
  26. 26.
    Kavanaugh MC (1995) Environ Prog 14:117CrossRefGoogle Scholar
  27. 27.
    Dingman J Jr, Siggia S, Barton C, Hiscock KB (1972) Anal Chem 44:1351CrossRefGoogle Scholar
  28. 28.
    Moyers EM, Fritz JB (1977) Anal Chem 49:418CrossRefGoogle Scholar
  29. 29.
    Blount CW, Leyden DE, Thomas TL, Guill SM (1973) Anal Chem 45:1045CrossRefGoogle Scholar
  30. 30.
    Bohra S, Mathur R, Mathur NK, Mathur PN (1992) J Polym Mater 9:101Google Scholar
  31. 31.
    Vernon E (1977) Chem Ind 15:634Google Scholar
  32. 32.
    Rivas BL, Pooley SA, Maturana HA, Villegas S (2001) Macromol Chem Phys 202(3):443CrossRefGoogle Scholar
  33. 33.
    Rivas BL, Maturana HA, Hauser P (1999) J Appl Polym Sci 73(3):369CrossRefGoogle Scholar
  34. 34.
    Shah BA, Shah AV, Shah PM (2008) E-J Chem 5(2):291CrossRefGoogle Scholar
  35. 35.
    Al-Rimawi F, Ahmed A, F Khalili, Mubarak MS (2004) Solvent Extr Ion Exc 22(4):721CrossRefGoogle Scholar
  36. 36.
    Dai S, Burleig MC, Ju YH, Gao HJ (2000) J Am Chem Soc 122(5):992CrossRefGoogle Scholar
  37. 37.
    Buyuktiryaki S, Say R, Ersoz A, Birlik E, Denizli A (2005) Talanta 67(3):640CrossRefGoogle Scholar
  38. 38.
    Haupt K (2001) Analyst 126:747CrossRefGoogle Scholar
  39. 39.
    Mosbach K, Ramstrom O (1996) Bio Tech 14:163Google Scholar
  40. 40.
    Wullf G (1993) Workshop: Tibtech March 11:85CrossRefGoogle Scholar
  41. 41.
    Schmuckler G (1965) Talanta 12:281CrossRefGoogle Scholar
  42. 42.
    Blasius E, Brozio B, Flaschka HA, Barnard AJ Jr (1967) Chelates in analytical chemistry, vol 1. Marcel Dekker, New York, p 49Google Scholar
  43. 43.
    Mayasova GV, Savvin SB (1986) Crit Rev Anal Chem 17:1Google Scholar
  44. 44.
    Kantipuly C, Katragadda S, Chow A, Gesser HD (1990) Talanta 37:491CrossRefGoogle Scholar
  45. 45.
    Biswas M, Mukherjee A (1994) Adv Polym Sci 115:89CrossRefGoogle Scholar
  46. 46.
    Riley JP, Taylor D (1968) Anal Chim Acta 40:479CrossRefGoogle Scholar
  47. 47.
    Garg BS, Sharma RK, Mittal S (1999) Microchem 1(61):9Google Scholar
  48. 48.
    Ueno K, Martell AE (1955) J Phys Chem 59:998CrossRefGoogle Scholar
  49. 49.
    Ueno K, Martell AE (1956) J Phys Chem 60:1270CrossRefGoogle Scholar
  50. 50.
    Che CM, Cheng WK (1986) J Chem Soc Chem Commun 1986:1443CrossRefGoogle Scholar
  51. 51.
    Samal S, Das RR, Sahoo D, Acharya S, Panda RL, Rout RC (1996) J Appl Polym Sci 62:1437CrossRefGoogle Scholar
  52. 52.
    Samal S, Das RR, Sahoo D, Acharya S (1997) Polym Lot 44:41Google Scholar
  53. 53.
    Samal S, Mohapatra NK, Acharya S, Dey RK (1999) React Polym 42:37CrossRefGoogle Scholar
  54. 54.
    Samal S, Das RR, Dey RK, Acharya S (2000) J Appl Polyi’n Sci 77:967CrossRefGoogle Scholar
  55. 55.
    Knop A, Pilato LA (1985) Phenolic resins. Springer, BerlinGoogle Scholar
  56. 56.
    Pasch H, Schrod M (2004) Macromol Rapid Commun 25:224CrossRefGoogle Scholar
  57. 57.
    Shafizadeh JE, Guionnet S, Tillman MS, Seferis JC (1999) J Appl Polyrn Sci 73(4):505CrossRefGoogle Scholar
  58. 58.
    Heifferich F (1962) Ion exchange. McGraw Hill, New YorkGoogle Scholar
  59. 59.
    Harjula R, Lehto J, Brodkin L, Tusa E (1997) Electric Power Research Institute, Palo AltoGoogle Scholar
  60. 60.
    Hutson GV (1996) Waste treatment. In: Wilson PD (ed) The nuclear fuel cycle. Oxford University Press, Oxford, Ch. 9Google Scholar
  61. 61.
    Chernjatskaja NB (1988) Radiochemistry 27:618Google Scholar
  62. 62.
    Yamasaki N, Kanahara S, Yanagisawa K (1984) Nippon Kagaku Kaishi 12:2015CrossRefGoogle Scholar
  63. 63.
    Campbell DA, Collins ED, King LJ (1983) Evaluation of the use of Zeolite mixtures in the submerged demineralizer system. In: Proceedings of the sixth international Zeolite conference, RenoGoogle Scholar
  64. 64.
    Sinha PK, Panicker PK, Amalraj RV, Krishnasamy V (1995) Waste Manage 15:149CrossRefGoogle Scholar
  65. 65.
    Sinha PK, Lal KB, Panicker PK, Krishnasamy V (1996) Radiochim Acta 73:157Google Scholar
  66. 66.
    Sinha PK, Amalraj RV, Krishnasamy V (1994) Radiochim Acta 65:125Google Scholar
  67. 67.
    Sinha PK, Krishnasamy V (1996) J Nuci Sd Technol 33:333CrossRefGoogle Scholar
  68. 68.
    Kurath DE, Bray LA, Ross WA, Ploetz DK (1990) In: Mellinger BG (ed) Nuclear waste management III: ceramic transactions, vol 9. American Ceramic Society, Columbus, p 529Google Scholar
  69. 69.
    Samanta SK (1996) J Radioanal Nuci Chem 209:235CrossRefGoogle Scholar
  70. 70.
    Heinonen OJ, Lehto J, Miettinen JK (1981) Radiochim Acta 28:93Google Scholar
  71. 71.
    Dosch RG (1981) Report. Sand 80-1212. Sandia Natl Lab, AlbuquerqueGoogle Scholar
  72. 72.
    Dosch RG, Brown NE, Stephens HP, Anthony RG (1993) Waste management ‘93, vol 2. Arizona Board of Regents, Phoenix, p 1751Google Scholar
  73. 73.
    Harjula R, Lehto J, Tusa EH, Paavola A (1994) Nucl Technol 107:272Google Scholar
  74. 74.
    Anthony RG, Philip CV, Dosch RG (1993) Waste Manage 13:503CrossRefGoogle Scholar
  75. 75.
    Zheng Z et al (1996) Eng Chem Res 35:4246CrossRefGoogle Scholar
  76. 76.
    Braun R, Dangieri TJ, Fennelly DJ (1996) Nuclear and hazardous waste management, vol. 1. In: Proceedings of the international topical meeting, Seattle. American Nuclear Society, La Grange Park p 204Google Scholar
  77. 77.
    Streat M, Jacobi DL (1995) In: Sengupta AK (ed) Ion exchange technology: advances in pollution control. CRC Press, Boca Raton, p 193Google Scholar
  78. 78.
    Samanta SK et al (1995) Nuclear and radiochemistry symposium (NUCAR 95). In: Proceedings of nuclear and radiochemistry symposium, Kalpakkam. Bhabha Atomic Research Centre, Bombay, p 303Google Scholar
  79. 79.
    Sinha PK, Amalraj RV, Krishnasamy V (1993) Waste Manage 13:341CrossRefGoogle Scholar
  80. 80.
    Hutson GV (1996) Nucl Energy 35:393Google Scholar
  81. 81.
    Samanta SK, Ramaswamy M, Misra BM (1992) Sep Sci Technol 27:255CrossRefGoogle Scholar
  82. 82.
    Samanta SK, Ramaswamy M, Sen P, Varadarajan N, Singh RK (1993) In: National symposium on management of radioactive and toxic wastes (SMART-93), Kalpakkam. Bhabha Atomic Research Centre, Bombay, p 56Google Scholar
  83. 83.
    Samanta SK, Theyyunni TK, Misra BM (1995) J Nucl Sci Technol 32:425CrossRefGoogle Scholar
  84. 84.
    Kulkarni Y, Samanta SK, Bakre SY, Raj K, Kurnra MS (1996) Waste management ‘96. In: Proceedings of the international symposium, Tucson. Arizona Board of Regents, PhoenixGoogle Scholar
  85. 85.
    Bray LA, Elovich RJ, Carson KJ (1990) Report. PNL-7273. Pacific Northwest Lab, RichiandGoogle Scholar
  86. 86.
    Joshi JD, Patel NB, Patel SD (2006) Iran Polym J 15(3):219Google Scholar
  87. 87.
    Joshi JD, Patel NB, Patel GP (2006) Int J Polym Mater 55:399CrossRefGoogle Scholar
  88. 88.
    Kapadia MA, Patel MM, Patel GP, Joshi JD (2008) J Coord Chem 61(5):677CrossRefGoogle Scholar
  89. 89.
    Vogel AI (1978) A text book of quantitative inorganic analysis, 4th edn. Longmans, Green and Co. Ltd, London, p 1978Google Scholar
  90. 90.
    Morris LR, Mock RA, Morshall GA, Hawe JH (1959) J Am Chem Sco 81:377CrossRefGoogle Scholar
  91. 91.
    Reddy AR, Reddy KH (2003) Proc Indian Acad Sci (Chem Sci) 115(3):155CrossRefGoogle Scholar
  92. 92.
    Patel SD, Patel NB, Joshi JD (2006) J Macromol Sci A: FAQ 43(8):1167Google Scholar
  93. 93.
    Joshi JD, Patel GP, Patel SD (2006) J Macromol Sci A: PAC 44(1):65Google Scholar
  94. 94.
    Kapadia MA, Patel MM, Patel GP, Joshi JD (2007) Int J Polym Mater 56(5):549CrossRefGoogle Scholar
  95. 95.
    Patel MM, Kapadia MA, Patel GP, Joshi JD (2007) React Funct Polym 67:746CrossRefGoogle Scholar
  96. 96.
    Patel MM, Kapadia MA, Patel GP, Joshi JD (2007) J Appl Polym Sci 106(2):1307CrossRefGoogle Scholar
  97. 97.
    Ameta R, Patel V, Joshi J (2007) Iran Polym J 16(9):615Google Scholar
  98. 98.
    Tikhomirova TI, Fadeeva VI, Kubryavtsev GV, Nestorenko PN, Ivanov VM, Savitchev AT, Smirnova NS (1991) Talanta 38:267CrossRefGoogle Scholar
  99. 99.
    Luo X-Y, Su Z-X, Gao W-Y, Zhang G-Y, Change X-J (1992) Analyst 117:145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Sardar Patel UniversityDist. AnandIndia

Personalised recommendations