Advertisement

Recent Advances in Solid-State Electronic Terahertz Systems

  • Jae-Sung Rieh
  • Dong-Hyun Kim
  • Kyungmin Kim
  • Hyunchul Kim
Chapter

Abstract

The terahertz (THz) band generally indicates the spectrum range that falls on roughly between the traditional electrical and optical frequency bands. Its definition varies over different sources, but one widely accepted definition is the frequency range of 0.1–10 THz. In terms of the wavelength in free space, it corresponds to the range of 3–0.03 mm. In terms of the more readily accepted band definition in the scientific community, the THz band partly include the millimeter-wave band (1 mm–1 cm, or 30–300 GHz) for the lower side and the infrared band (0.3 mm–750 nm, or 1–400 THz) for the upper boundary, while it covers the entire range of sub-millimeter band (0.1–1 mm, or 300 GHz–3 THz). It is notable that the range includes some scientifically significant points, one example being the frequency that corresponds to a photon energy equal to kT at room temperature (~6.2 THz).

Keywords

High Electron Mobility Transistor Active Mixer Conversion Gain Heterojunction Bipolar Transistor Versus Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Crowe, T.W., Bishop, W.L., Porterfield, D.W., Hesler, J.L., Weikle II, R.M.: Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits 40, 2104 (2005)CrossRefGoogle Scholar
  2. 2.
    Pfeiffer, U.R., Ojefors, E., Lisauskas, A., Roskos, H.G.: Opportunities for silicon at mmwave and terahertz frequencies, In: IEEE Bipolar/BiCMOS Circuits Technol. Meet. 149–156 (2008)Google Scholar
  3. 3.
    Rieh, J.-S., Jagannathan, B., Greenberg, D.R., Meghelli, M., Rylyakov, A., Guarin, F., Yang, Z., Ahlgren, D.C., Freeman, G., Cottrell, P., Harame, D.: SiGe heterojunction bipolar transistors and circuits toward terahertz communication applications. IEEE Trans. Microw. Theory Tech. 52, 2390–2408 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Rieh, J.-S., Jeon, S., Kim, M.: An overview of integrated THz electronics for communication applications. In: 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS) 1–4 (2011)Google Scholar
  5. 5.
    Miles, R., Zhang, X.-C., Eisele, H., Krotkus, A.: Terahertz Frequency Detection and Identification of Materials and Objects. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, S.-M., Fang, Y.-K., Juang, F.R., Yeh, W.-K., Chao, C.-P., Tseng, H.-C.: Terahertz schottky barrier diodes with various isolation designs for advanced radio frequency applications. Thin Solid Films 519, 471–474 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Thomas, B., Maestrini, A., Beaudin, G.: A low-noise fixed-tuned 300–360-GHz sub-harmonic mixer using planar schottky diodes. IEEE Microw. Wirel. Compon. Lett. 15, 865–867 (2005)CrossRefGoogle Scholar
  8. 8.
    Karpov, A., Miller, D., Rice, F., Stern, J.A., Bumble, B., LeDuc, H.G., Zmuidzinas, J.: Low noise 1 THz-1.4 THz mixers using Nb/Al-AlN/NbTiN SIS junctions. IEEE Trans. Appl. Supercond. 17, 343–346 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Khosropanah, P., Gao, J.R., Laauwen, W.M., Hajenius, M., Klapwijk, T.M.: Low noise NbN hot electron bolometer mixer at 4.3 THz. Appl. Phys. Lett. 91, 221111–221111-3 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J.-S. Rieh and D.-H. Kim.: An overview of semiconductor technologies and circuits for terahertz communication applications, In: 2009 IEEE GLOBECOM Workshops. 1–6 (2009)Google Scholar
  11. 11.
    Snodgrass W., Hafez, W., Harff, N., Feng, M.: Pseudomorphic InP/InGaAs heterojunction bipolar transistors (PHBTs) experimentally demonstrating fT = 765 GHz at 25C increasing to fT = 845 GHz at −55C. In: Technical Digest of International Electron Devices Meeting. Late news 2006Google Scholar
  12. 12.
    Kim, D.-H., del Alamo, J.A.: 30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz. IEEE Electron Device Lett. 29, 830–833 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Lai R., Mei, X.B., Deal, W.R., Yoshida, W., Kim, Y.M., Liu, P.H., Lee, J., Uyeda, J., Radisic, V., Lange, M., Gaier, T., Samoska, L., Fung, A.: Sub 50 nm InP HEMT device with Fmax greater than 1 THz. In: IEEE International Electron Devices Meeting. 609–611 (2007)Google Scholar
  14. 14.
    Geynet, B., Chevalier, P., Vandelle, B., Brossard, F., Zerounian, N., Buczko, M., Gloria, D., Aniel, F., Dambrine G., Danneville, F., Dutartre, D., Chantre, A.: SiGe HBTs featuring fT > 400 GHz at room temperature. In: IEEE Bipolar/BiCMOS Circuits and Technology Meeting. 121–124 (2008)Google Scholar
  15. 15.
    Heinemann, B., Barth, R., Bolze, D., Drews, J., Fischer, G.G., Fox, A., Fursenko, O., Grabolla T., Haak, U., Knoll, D., Kurps, R., Lisker, M., Marschmeyer, Ru, x, cker, H., Schmidt D., Schmidt J., Schubert, M.A., Tillack B., Wipf, C., D. Wolansky, D.W., Yamamoto, Y.: SiGe HBT technology with fT/fmax of 300 GHz/500 GHz and 2.0 ps CML gate delay. In IEEE International Electron Devices Meeting. 30.5.1–30.5.4 (2010)Google Scholar
  16. 16.
    Lee, S., Jagannathan, B., Narasimha, S., Chou, A., Zamdmer, N., Johnson, J., Williams, R., Wagner, L., Jonghae Kim, Plouchart, J.O., Pekarik, J., Springer, S., Freeman, G.: Record RF performance of 45-nm SOI CMOS technology. In: IEEE International Electron Devices Meeting. 255–258 (2007)Google Scholar
  17. 17.
    Deal, W.R., Leong, K., Radisic, V., Sarkozy, S., Gorospe, B., Lee, J., Liu, P.H., Yoshida, W., Zhou, J., Lange, M., Lai, R., Mei, X.B.: Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microw. Wirel. Compon. Lett. 21, 368–370 (2011)CrossRefGoogle Scholar
  18. 18.
    Mao, Y., Schmalz, K., Borngräber, J., Scheytt, J.C.: A 245 GHz CB LNA in SiGe. In: Eur. Microw. Integr. Circuits (EuMIC) 224–227 (2011)Google Scholar
  19. 19.
    Radisic, V., Mei, X.B., Deal, W.R., Yoshida, W., Liu, P.H., Uyeda, J., Barsky, M., Samoska, L., Fung, A., Gaier, T., Lai, R.: Demonstration of sub-millimeter wave fundamental oscillators using 35-nm InP HEMT technology. IEEE Microw. Wirel. Compon. Lett. 17, 223–225 (2007)CrossRefGoogle Scholar
  20. 20.
    Seok, E., Cao, C., Shim, D., Arenas, D.J., Tanner, D.B., Hung C.-M., O, K.K.: A 410 GHz CMOS push–push oscillator with an on-chip patch antenna. In: IEEE International Solid-State Circuits Conference. 472–473 (2008)Google Scholar
  21. 21.
    Momeni, O., Afshari, E.: High power terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J. Solid-State Circuits 46, 583–597 (2011)CrossRefGoogle Scholar
  22. 22.
    Kallfass, I., Massler, H., Leuther, A., Tessmann, A., Schlechtweg, M.: A 210 GHz dual-gate FET mixer MMIC with >2 dB conversion gain, high LO-to-RF isolation, and low lo-drive requirements. IEEE Microw. Wirel. Compon. Lett. 18, 557–559 (2008)CrossRefGoogle Scholar
  23. 23.
    Pfeiffer, U.R., Ojefors, E., Yan, Z.: A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160 GHz. In: International Solid-State Circuits Conference. 416–417 (2010)Google Scholar
  24. 24.
    Xu, Z., Gu, Q.J., Wu, Y.-C., Tang, A., Lin, Y.-L., Chen, H.-H., Jou, C., Chang, M.C.F.: D-band CMOS transmitter and receiver for multi-giga-bit/sec wireless data link. In: IEEE Custom Integrated Circuits Conference. 1–4 (2010)Google Scholar
  25. 25.
    Abbasi, M., Gunnarsson, S.E., Wadefalk, N., Kozhuharov, R., Svedin, J., Cherednichenko, S., Angelov, I., Kallfass, I., Leuther, A., Zirath, H.: Single-chip 220-GHz active heterodyne receiver and transmitter MMICs with on-chip integrated antenna. IEEE Trans. Microw. Theory Tech. 59, 466–478 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jae-Sung Rieh
    • 1
  • Dong-Hyun Kim
    • 1
  • Kyungmin Kim
    • 1
  • Hyunchul Kim
    • 1
  1. 1.School of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations