Electron Beam Sources Based on Carbon Nanotube for THz Applications

  • Yong Hyup Kim
  • Tae June Kang
  • Wal Jun Kim
  • Eui Yun Jang
  • Jeong Seok Lee


Performance of electron emitter plays an essential role in the detection and generation of electromagnetic wave signals. It becomes technologically challenging from spanning terahertz applications, due to the lack of sufficient power sources. The vacuum THz amplifier, such as a travelling wave tube or a klystron is practically used to increase the output power. The characteristic of these amplifiers is mainly represented by the performance of electron beam source which has to deliver a sufficient current in order to allow an amplification of the THz signal.


Point Emitter Field Emission Property Emission Current Density Field Emission Display Lithium Dodecyl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119(781), 173–181 (1928)Google Scholar
  2. 2.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Hong, S., Myung, S.: Nanotube electronics: a flexible approach to mobility. Nat. Nano. 2(4), 207–208 (2007)CrossRefGoogle Scholar
  4. 4.
    Frank, S., et al.: Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Lau, A.K.-T., Hui, D.: The revolutionary creation of new advanced materials—carbon nanotube composites. Comp. Pt. B Eng. 33(4), 263–277 (2002)CrossRefGoogle Scholar
  6. 6.
    Hone, J., et al.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59(4), R2514 (1999)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Che, J., et al.: Thermal conductivity of carbon nanotubes. Nanotechnology 11(2), 65 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Berber, S., Kwon, Y.-K., Tománek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Yu, M.-F., et al.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Peng, B., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nano. 3(10), 626–631 (2008)CrossRefGoogle Scholar
  11. 11.
    Minus, M., Kumar, S.: The processing, properties, and structure of carbon fibers. JOM J. Min. Metals Mat. Soc. 57(2), 52–58 (2005)CrossRefGoogle Scholar
  12. 12.
    Vaisman, L., Wagner, H.D., Marom, G.: The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 128–130, 37–46 (2006)CrossRefGoogle Scholar
  13. 13.
    Kang, Y., Taton, T.A.: Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J. Am. Chem. Soc. 125(19), 5650–5651 (2003)CrossRefGoogle Scholar
  14. 14.
    Ros, T.G., et al.: Surface oxidation of carbon nanofibres. Chem. Eur. J.) 8(5), 1151–1162 (2002)CrossRefGoogle Scholar
  15. 15.
    Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Andrews, R., Weisenberger, M.C.: Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8(1), 31–37 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Li, Z., et al.: Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos. Sci. Technol. 66(7–8), 1022–1029 (2006)CrossRefGoogle Scholar
  19. 19.
    Xu, J., Fisher, T.S.: Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transf. 49(9–10), 1658–1666 (2006)CrossRefGoogle Scholar
  20. 20.
    Artukovic, E., et al.: Transparent and flexible carbon nanotube transistors. Nano Lett. 5(4), 757–760 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Hu, R., et al.: Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    de Heer, W.A., Châtelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270(5239), 1179–1180 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Choi, W., et al.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75(20), 3129 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, J., et al.: Efficient fabrication of carbon nanotube point electron sources by dielectrophoresis. Adv. Mater. 16(14), 1219 (2004)CrossRefGoogle Scholar
  25. 25.
    Wang, Z.L., et al.: In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80(5), 856 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Wei, Y., et al.: Stability of carbon nanotubes under electric field studied by scanning electron microscopy. Appl. Phys. Lett. 79(27), 4527 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Li, W.Z., et al.: Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Wei, B.Q., et al.: Microfabrication technology: organized assembly of carbon nanotubes. Nature 416(6880), 495–496 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Hata, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Thong, J.: High-current field emission from a vertically aligned carbon nanotube field emitter array. Appl. Phys. Lett. 79(17), 2811 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Fan, S., et al.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Ando, Y., Iijima, S.: Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys. Pt. 2 Lett. 32(1A–B), L107–L109 (1993)Google Scholar
  33. 33.
    Li, J., et al.: Field emission characteristic of screen-printed carbon nanotube cathode. Appl. Surf. Sci. 220(1–4), 96–104 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Xiomara, C.-C., et al.: A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 20(32), 325707 (2009)CrossRefGoogle Scholar
  35. 35.
    Jo, S.: Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Jiang, K., Li, Q., Fan, S.: Spinning continuous carbon nanotube yarns. Nature 419(6909), 801 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Lee, C.J., et al.: Field emission characteristics of point emitters fabricated by a multiwalled carbon nanotube yarn. Nanotechnology 20(31), 315201 (2009)Google Scholar
  39. 39.
    Wei, Y.: Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Appl. Phys. Lett. 89(6), 063101 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Zakhidov, A.A., et al.: Field emission of electrons by carbon nanotube twist-yarns. Appl. Phys. A Mater. Sci. Proc. 88(4), 593–600 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Vigolo, B., et al.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    Kozlov, M.E., et al.: Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 17(5), 614–617 (2005)CrossRefGoogle Scholar
  43. 43.
    Ericson, L.M., et al.: Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Jang, E.Y., et al.: Macroscopic single-walled-carbon-nanotube fiber self-assembled by dip-coating method. Adv. Mater. 21(43), 4357–4361 (2009)CrossRefGoogle Scholar
  45. 45.
    Kim, W.J., et al.: Better than 10 mA field emission from an isolated structure emitter of a metal oxide/CNT composite. ACS Nano 5(1), 429–435 (2010)CrossRefGoogle Scholar
  46. 46.
    Sugie, H., et al.: Carbon nanotubes as electron source in an x-ray tube. Appl. Phys. Lett. 78(17), 2578–2580 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    Yue, G.Z., et al.: Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81(2), 355–357 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Matsumoto, T., Mimura, H.: Point x-ray source using graphite nanofibers and its application to x-ray radiography. Appl. Phys. Lett. 82(10), 1637–1639 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    Cheng, Y., et al.: Dynamic radiography using a carbon-nanotube-based field-emission x-ray source. Rev. Sci. Instrum. 75(10), 3264–3267 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Zhang, J., et al.: A nanotube-based field emission x-ray source for microcomputed tomography. Rev. Sci. Instrum. 76(9), 094301–094304 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Liu, Z., et al.: Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography. Appl. Phys. Lett. 89(10), 103111-3 (2006)ADSGoogle Scholar
  52. 52.
    Kawakita, K., et al.: Development of microfocused x-ray source by using carbon nanotube field emitter. Rev. Sci. Instrum. 77(5), 054302-6 (2006)Google Scholar
  53. 53.
    Tolt, Z.L., et al.: Carbon nanotube cold cathodes for application in low current x-ray tubes. J. Vac. Sci. Technol. B 26(2), 706–710 (2008)CrossRefGoogle Scholar
  54. 54.
    Heo, S.H., Ihsan, A., Cho, S.O.: Transmission-type microfocus x-ray tube using carbon nanotube field emitters. Appl. Phys. Lett. 90(18), 183109-3 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yong Hyup Kim
    • 1
  • Tae June Kang
    • 1
  • Wal Jun Kim
    • 1
  • Eui Yun Jang
    • 1
  • Jeong Seok Lee
    • 1
  1. 1.Department of Physics and Astronomy, School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulRepublic of South Korea

Personalised recommendations