Structure and Function of Skin: The Application of THz Radiation in Dermatology

  • Seong Jin Jo
  • Oh Sang Kwon


Skin, the largest organ of human being, is a soft membrane covering the exterior of the body. It protects the host from mechanical injuries, toxic materials, pathogenic organisms, and so on. Although its basic function is protection from the environment like this, it is not a simple and static shield but a complex and dynamic organ which performs important roles in maintaining the homeostasis of the body. Skin controls evaporation to prevent massive water loss, and regulates body temperature by controlling the blood flow of skin and perspiration [1]. It is responsible for the synthesis of vitamin D and a storage center for lipid and water. In addition, skin contains nerve endings and provides sensation for temperature, touch, pressure, and vibration.


Stratum Corneum Hair Follicle Basal Cell Carcinoma Sebaceous Gland Dermal Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cork, M.J., Danby, S.: Skin barrier breakdown: a renaissance in emollient therapy. Br. J. Nurs. 18(14), 872, 874, 876–877 (2009)Google Scholar
  2. 2.
    Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Pickwell-MacPherson, E., Wallace, V.P.: Terahertz pulsed imaging—a potential medical imaging modality? Photodiag. Photodyn. Ther. 6(2), 128–134 (2009)CrossRefGoogle Scholar
  4. 4.
    Chan, L.S.: Human skin basement membrane in health and in autoimmune diseases. Front Biosci. 2, d343–d352 (1997)Google Scholar
  5. 5.
    Bragulla, H.H., Homberger, D.G.: Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 214(4), 516–559 (2009)CrossRefGoogle Scholar
  6. 6.
    Passeron, T., Mantoux, F., Ortonne, J.P.: Genetic disorders of pigmentation. Clin. Dermatol. 23(1), 56–67 (2005)CrossRefGoogle Scholar
  7. 7.
    Nordlund, J.J.: The melanocyte and the epidermal melanin unit: an expanded concept. Dermatol. Clin. 25(3), 271–281 (2007)CrossRefGoogle Scholar
  8. 8.
    Wolff, K., Stingl, G.: The Langerhans cell. J. Invest. Dermatol. 80, 17s–21s (1983)CrossRefGoogle Scholar
  9. 9.
    Valladeau, J., Saeland, S.: Cutaneous dendritic cells. Semin. Immunol. 17(4), 273–283 (2005)CrossRefGoogle Scholar
  10. 10.
    Chu, D.H.: Development and structure of skin. In: Wolff, K., et al. (eds.) Fitzpatrick’s Dermatology in General Medicine, pp. 739–749. McGraw-Hill, New York (2008)Google Scholar
  11. 11.
    Johansson, O.: The innervation of the human epidermis. J. Neurol. Sci. 130(2), 184–190 (1995)CrossRefGoogle Scholar
  12. 12.
    Sharov, A.A., et al.: Bone morphogenetic protein signaling regulates the size of hair follicles and modulates the expression of cell cycle-associated genes. Proc. Natl. Acad. Sci. 103(48), 18166 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Cotsarelis, G.: Epithelial stem cells: a folliculocentric view. J. Invest. Dermatol. 126(7), 1459–1468 (2006)CrossRefGoogle Scholar
  14. 14.
    Ito, M., et al.: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11(12), 1351–1354 (2005)CrossRefGoogle Scholar
  15. 15.
    Morris, R.J., et al.: Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22(4), 411–417 (2004)CrossRefGoogle Scholar
  16. 16.
    Oshima, H., et al.: Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104(2), 233–245 (2001)CrossRefGoogle Scholar
  17. 17.
    Whiting, D.A.: Chronic telogen effluvium: increased scalp hair shedding in middle-aged women. J. Am. Acad. Dermatol. 35(6), 899–906 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Downie, M., Guy, R., Kealey, T.: Advances in sebaceous gland research: potential new approaches to acne management. Int. J. Cosmet. Sci. 26(6), 291–311 (2004)CrossRefGoogle Scholar
  19. 19.
    Szabo, G.: The number of eccrine sweat glands in human skin. In: Montagna, W., Ellis, R., Silver, A. (eds.) Advances in Biology of Skin, p. 1. Pergamon, New York (1962)Google Scholar
  20. 20.
    Sato, K., Dobson, R.L.: Regional and individual variations in the function of the human eccrine sweat gland. J. Invest. Dermatol. 54(6), 443–449 (1970)CrossRefGoogle Scholar
  21. 21.
    Robertshaw, D.: Apocrine sweat glands. In: Goldsmith, L. (ed.) Biochemistry and Molecular Biology of the Skin, p. 763. Oxford University Press, Oxford (1991)Google Scholar
  22. 22.
    Koutnikova, H., Auwerx, J.: Regulation of adipocyte differentiation. Ann. Med. 33(8), 556–561 (2001)CrossRefGoogle Scholar
  23. 23.
    Holst, D., Grimaldi, P.A.: New factors in the regulation of adipose differentiation and metabolism. Curr. Opin. Lipidol. 13(3), 241 (2002)CrossRefGoogle Scholar
  24. 24.
    Plusquellic, D.F., et al.: Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8(17), 2412–2431 (2007)CrossRefGoogle Scholar
  25. 25.
    Smye, S., et al.: The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 46, R101 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Korpan, N.N., Saradeth, T.: Clinical effects of continuous microwave for postoperative septic wound treatment: a double-blind controlled trial. Am. J. surg. 170(3), 271–276 (1995)CrossRefGoogle Scholar
  27. 27.
    Rojavin, M., Ziskin, M.: Medical application of millimeter waves. QJ Med 91(1), 57–66 (1998)CrossRefGoogle Scholar
  28. 28.
    Radzievsky, A.A., et al.: Suppression of pain sensation caused by millimeter waves: a double-blinded, cross-over, prospective human volunteer study. Anesth. Analg. 88(4), 836 (1999)Google Scholar
  29. 29.
    Alekseev, S.I., Ziskin, M.C.: Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects. IEEE Trans. Biomed. Eng. 48(9), 1013–1019 (2001)CrossRefGoogle Scholar
  30. 30.
    Alekseev, S., Ziskin, M.: Millimeter wave power density in aqueous biological samples. Bioelectromagnetics 22(4), 288–291 (2001)CrossRefGoogle Scholar
  31. 31.
    Warner, R.R., Myers, M.C., Taylor, D.A.: Electron probe analysis of human skin: determination of the water concentration profile. J. Invest. Dermatol. 90(2), 218–224 (1988)CrossRefGoogle Scholar
  32. 32.
    Richard, S., et al.: In vivo proton relaxation times analysis of the skin layers by magnetic resonance imaging. J. Invest. Dermatol. 97(1), 120–125 (1991)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mirrashed, F., Sharp, J.C.: In vivo morphological characterisation of skin by MRI micro imaging methods. Ski. Res. Technol. 10(3), 149–160 (2004)CrossRefGoogle Scholar
  34. 34.
    Mirrashed, F., Sharp, J.C.: In vivo quantitative analysis of the effect of hydration (immersion and Vaseline treatment) in skin layers using high resolution MRI and magnetisation transfer contrast*. Ski. Res. Technol. 10(1), 14–22 (2004)CrossRefGoogle Scholar
  35. 35.
    Imokawa, G., Kuno, H., Kawai, M.: Stratum corneum lipids serve as a bound-water modulator. J. Invest. Dermatol. 96(6), 845–851 (1991)CrossRefGoogle Scholar
  36. 36.
    Caspers, P., Lucassen, G., Puppels, G.: Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J. 85(1), 572–580 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Caspers, P.J., et al.: In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J. Invest. Dermatol. 116(3), 434–442 (2001)CrossRefGoogle Scholar
  38. 38.
    Mashimo, S., et al.: Dielectric relaxation time and structure of bound water in biological materials. J. Phys. Chem. 91(25), 6337–6338 (1987)CrossRefGoogle Scholar
  39. 39.
    Richard, S., et al.: Characterization of the skin in vivo by high resolution magnetic resonance imaging: water behavior and age-related effects. J. Invest. Dermatol. 100(5), 705–709 (1993)CrossRefGoogle Scholar
  40. 40.
    Alekseev, S., et al.: Millimeter wave dosimetry of human skin. Bioelectromagnetics 29(1), 65–70 (2008)CrossRefGoogle Scholar
  41. 41.
    Alekseev, S., Ziskin, M.: Human skin permittivity determined by millimeter wave reflection measurements. Bioelectromagnetics 28(5), 331–339 (2007)CrossRefGoogle Scholar
  42. 42.
    Gandhi, O.P., Riazi, A.: Absorption of millimeter waves by human beings and its biological implications. IEEE Trans. Microw. Theory Tech. 34(2), 228–235 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    Feldman, Y., et al.: Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. Phys. Rev. Lett. 100(12), 128102 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Feldman, Y., et al.: The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys. Med. Biol. 54, 3341 (2009)CrossRefGoogle Scholar
  45. 45.
    Ney, M., Abdulhalim, I.: Does human skin truly behave as an array of helical antennae in the millimeter and terahertz wave ranges? Opt. Lett. 35(19), 3180–3182 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Alekseev, S., Szabo, I., Ziskin, M.: Millimeter wave reflectivity used for measurement of skin hydration with different moisturizers. Ski. Res. Technol. 14(4), 390–396 (2008)CrossRefGoogle Scholar
  47. 47.
    Kadlec, F., et al.: Assessing skin hydration status in haemodialysis patients using terahertz spectroscopy: a pilot/feasibility study. Phys. Med. Biol. 53, 7063 (2008)CrossRefGoogle Scholar
  48. 48.
    Woodward, R.M., et al.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853 (2002)CrossRefGoogle Scholar
  49. 49.
    Loffler, T., et al.: Visualization and classification in biomedical terahertz pulsed imaging. Phys. Med. Biol. 47, 3847 (2002)CrossRefGoogle Scholar
  50. 50.
    Pickwell, E., et al.: In vivo study of human skin using pulsed terahertz radiation. Phys. Med. Biol. 49, 1595 (2004)CrossRefGoogle Scholar
  51. 51.
    Ross, K., Gordon, R.: Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance. J. Microsc. 128(Pt 1), 7 (1982)CrossRefGoogle Scholar
  52. 52.
    Chen, J., et al.: In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas. Radiology 184(2), 427 (1992)Google Scholar
  53. 53.
    Rofstad, E., et al.: Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin–spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue. Int. J. Radiat. Biol. 65(3), 387–401 (1994)CrossRefGoogle Scholar
  54. 54.
    Gniadecka, M., Nielsen, O.F., Wulf, H.: Water content and structure in malignant and benign skin tumours. J. Mol. Struct. 661, 405–410 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    Joseph, C.S., et al.: Continuous wave terahertz transmission imaging of nonmelanoma skin cancers. Lasers Surg. Med. 43(6), 457–462 (2011)CrossRefGoogle Scholar
  56. 56.
    Brackexridge, C.: The tyrosine and tryptophan content of blood serum in malignant disease. Clin. Chim. Acta 5(4), 539–543 (1960)CrossRefGoogle Scholar
  57. 57.
    Crowson, A.N.: Basal cell carcinoma: biology, morphology and clinical implications. Mod. pathol. 19, S127–S147 (2006)CrossRefGoogle Scholar
  58. 58.
    Woodward, R.M., et al.: Terahertz pulse imaging of ex vivo basal cell carcinoma. J. Invest. Dermatol. 120(1), 72–78 (2003)CrossRefGoogle Scholar
  59. 59.
    Pickwell, E., et al.: Simulating the response of terahertz radiation to basal cell carcinoma using ex vivo spectroscopy measurements. J. Biomed. Opt. 10, 064021 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    Wallace, V.P., et al.: Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl. spectrosc. 60(10), 1127–1133 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    Wallace, V.P., et al.: Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br. J. Dermatol. 151(2), 424–432 (2004)CrossRefGoogle Scholar
  62. 62.
    Mitobe, K., et al.: Imaging of epithelial cancer in sub-terahertz electromagnetic wave. IEEE, 2005Google Scholar
  63. 63.
    Clothier, R., Bourne, N.: Effects of THz exposure on human primary keratinocyte differentiation and viability. J. Biol. Phys. 29(2), 179–185 (2003)CrossRefGoogle Scholar
  64. 64.
    Boukamp, P., et al.: Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. cell biol. 106(3), 761 (1988)CrossRefGoogle Scholar
  65. 65.
    Szabo, I., et al.: Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics 22(5), 358–364 (2001)CrossRefGoogle Scholar
  66. 66.
    Szabo, I., et al.: Low power millimeter wave irradiation exerts no harmful effect on human keratinocytes in vitro. Bioelectromagnetics 24(3), 165–173 (2003)CrossRefGoogle Scholar
  67. 67.
    Wilmink, G.J., et al.: In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation. Lasers Surg. Med. 43(2), 152–163 (2011)CrossRefGoogle Scholar
  68. 68.
    Bock, J., et al.: Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation. PloS one 5(12), e15806 (2010)CrossRefGoogle Scholar
  69. 69.
    Blick, D.W., et al.: Thresholds of microwave evoked warmth sensations in human skin. Bioelectromagnetics 18(6), 403–409 (1997)CrossRefGoogle Scholar
  70. 70.
    Szabo, I., et al.: Destruction of cutaneous melanoma with millimeter wave hyperthermia in mice. IEEE Trans. Plasma Sci. 32(4), 1653–1660 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of DermatologySeoul National University College of Medicine, Institute of Dermatological Science, Seoul National UniversitySeoulKorea
  2. 2.Department of DermatologySeoul National University HospitalSeoulKorea

Personalised recommendations