Teraherz Pulse Near-Field Microscopes

  • Kiwon Moon
  • Meehyun Lim
  • Youngwoong Do
  • Haewook Han
Chapter

Abstract

We review the recent progress in the terahertz (THz) apertureless near-field microscopes. We demonstrate quantitative analysis and measurements of the THz near-fields interactions in the probe-sample system. We also present a self-consistent line dipole image method for the quantitative analysis of the near-field interaction. The measurements of approach curves and relative contrasts on gold and silicon substrates were in excellent agreement with calculations based on the self-consistent line dipole image method.

Keywords

GaAs Substrate Tuning Fork Piezo Actuator Quartz Tuning Fork Probe Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hunsche, S., Koch, M., Brener, I., Nuss, M.C.: THz near-field imaging. Opt. Comm. 150, 22–26 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Chen, Q., Zhang, X.-C.: Semiconductor dynamic aperture for near-field terahertz wave imaging. IEEE J. Sel. Top. Quantum Electron. 7(4), 608–614 (2001)CrossRefGoogle Scholar
  3. 3.
    van der Valk, N.C.J., Planken, P.C.M.: Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip. Appl. Phys. Lett. 81(9), 1558–1560 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Yuan, T., Park, H., Xu, J., Han, H., Zhang, X.-C.: Field induced THz wave emission with nanometer resolution. Proc. SPIE 5649, 1–8 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Chen, H.T., Kersting, R., Cho, G.C.: Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83(15), 3009–3011 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Park, H., Kim, J., Han, H.: THz pulse near-field microscope with nanometer resolution, presented at the 35th workshop: physics and technology of THz photonics 2005, pp. 20–26. Erice, Italy (July 2005)Google Scholar
  7. 7.
    Park, H., Kim, J., Kim, M., Han, H., Park, I.: Terahertz near-field microscope, presented at the Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics (IRMMW-THz 2006), pp. 18–22. Shanghai, China (September 2006)Google Scholar
  8. 8.
    von Ribbeck, H.-G., Brehm, M., van der Weide, D.W., Winnerl, S., Drachenko, O., Helm, M., Keilmann, F.: Spectroscopic THz near-field microscope. Opt. Express 16(5), 3430–3438 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Huber, A.J., Keilmann, F., Wittborn, J., Aizpurua, J., Hillenbrand, R.: Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano. Lett. 8(11), 3766–3770 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Knoll, B., Keilmann, F.: Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Comm. 182, 321–328 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Hillenbrand, R., Keilmann, F.: Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85(14), 3029–3032 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Taubner, T., Hillenbrand, R., Keilmann, F.: Nanoscale polymer recognition by spectral signature in scattered infrered near-field microscopy. Appl. Phys. Lett. 85(21), 5064–5066 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Labardi, M., Patanè, S., Allegrini, M.: Artifact-free near-field optical imaging by apertureless microscopy. Appl. Phys. Lett. 77(5), 621–623 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Novotny, L., Bian, R.X., Xie, X.S.: Theory of nanometric optical tweezers. Phys. Rev. Lett. 79(4), 645–648 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Aravind, P.K., Metiu, H.: The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy. Surf. Sci. 124, 506–528 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    Suknov, S.V.: Role of multipole moment of the probe in apertureless near-field optical microscopy. Ultramicroscopy 101, 111–122 (2004)CrossRefGoogle Scholar
  17. 17.
    Porto, J.A., Johansson, P., Apell, S.P., López-Ríos, T.: Resonance shift effects in apertureless scanning near-field optical microscopy. Phys. Rev. B 67, 085409 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Cvitkovic, A., Ocelic, N., Hillenbrand, R.: Analytical model for quantitative prediction of material contrast in scattering-type near-field optical microscopy. Opt. Express 15(14), 8550–8565 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Esteban, R., Vogelgesang, R., Kern, K.: Tip-substrate interaction in optical near-field microscopy. Phys. Rev. B 75, 195410 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Brehm, M., Schliesser, A., Čajko, F., Tsukerman, I., Keilmann, F.: Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Opt. Express 16(15), 11203–11215 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Moon, K., Jung, E., Lim, M., Do, Y., Han, H.: Terahertz near-field microscope analysis and measurements of scattering signals. IEEE Trans. Terahertz Sci. Technol. 1, 164–168 (2011)CrossRefGoogle Scholar
  22. 22.
    Moon, K., Jung, E., Lim, M., Do, Y., Han, H.: Quantitative analysis and measurements of near-field interactions in terahertz microscopes. Opt. Express 19(12), 11539–11544 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    van Exter, M., Fattinger, Ch., Grischkowsky, D.: Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 34(20), 1128–1130 (1989)CrossRefGoogle Scholar
  24. 24.
    van Exter, M., Fattinger, Ch., Grischkowsky, D.: High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett. 55(4), 337–339 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    Grischkowsky, D., Keiding, S., van Exter, M., Fattinger, Ch.: Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7(10), 2006–2015 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    Lindell, I.V., Sten, J.C.-E., Nikoskinen, K.I.: Electrostatic image method for the interaction of two dielectric spheres. Radio. Sci. 28(3), 319–329 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Ordal, M.A., Bell, R.J., Alexander, R.W.Jr., Long, L.L and Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24(24), 4493–4499 (1985)Google Scholar
  28. 28.
    Kulawik, M., Nowicki, M., Thielsch, G., Cramer, L., Rust, H.-P., Freund, H.-J., Pearl, T.P., and Weiss, P.S.: A double lamellae dropoff etching procedure for tungsten tips attached to tuning fork atomic force microscopy/scanning tunneling microscopy sensors. Rev. Sci. Instrum. 74(2), 1027–1030 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kiwon Moon
    • 1
  • Meehyun Lim
    • 1
  • Youngwoong Do
    • 1
  • Haewook Han
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational Laboratory for Nano-THz Photonics, POSTECHPohangKorea

Personalised recommendations