Principle of Terahertz Radiation Using Electron Beams

Chapter

Abstract

This part introduces high power THz coherent radiation sources that take advantage of free electron beams. Following a description of characteristics on vacuum electron devices (VEDs), fundamental radiation principle of beam-wave interaction is explained with specifying their types and applications. Conventional high power microwave VEDs such as klystrons, TWTs, gyrotrons, and FELs are described in their technical perspectives with brief overview of device characteristics. Addressing technical challenges on up-conversion-to-THz of conventional approach, this part explores the state-of-the-art micro-VEDs considered for modern THz applications such as communication, imaging, sensing, spectroscopy, and so on, which are combined with modern microfabrication technologies. Novel MEMS techniques to microminiaturize RF components such as electron gun and RF interaction circuits are also presented.

Keywords

Travel Wave Tube Sheet Beam Beam Tunnel Radio Frequency Circuit Sheet Electron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Smye, S.W., Chamber, J.M., Fitzgerald, A.J., Berry, E.: The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 46, R101–R112 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Xu, J., Zhang, H., Yuan, T., Xu, X., Zhang, X.-C., Reightler, R., Madaras, E.: T-rays identify defects in insulating materials. In: CLEO, CMB 2, 2004Google Scholar
  3. 3.
    Hermann, M., Tani, M., Sakai, K., Fukasawa, R.: Terahertz imaging of silicon wafers. J. Appl. Phys. 91, 1247 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Kiwa, T., Tonouchi, M., Yamshita, M., Kawase, K.: Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Opt. Lett. 28, 2058–2063 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Exp. 11, 2549–2554 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Seibert, K., Loffler, T., Quast, H., Thomson, M., Bauer, T., Leonhardt, R., Czasch, S., Roskos, H.G.: All-optoelectronic continuous wave THz imaging for biomedical applications. Phys. Med. Biol. 47, 3743 (2002)CrossRefGoogle Scholar
  7. 7.
    Zhao, G., Mars, M., Wenckebach, T., Planken, P.: Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. 19, 1476 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Descour, M.R., et al.: Toward the development of miniaturized imaging systems for detection of pre-cancer. IEEE J. Quant. Electron. 38, 122 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Arnone, D.D., Ciesla, C.M., Corchia, A., Egusa, S., Pepper, M., Chamberlain, J.M., Bezant, C., Linfield, E.H., Clothier, R., Khammo, N.: Applications of terahertz (THz) technology to medical imaging terahertz spectroscopy and applications. In: SPIE, vol. 3828, p. 209. Munich, Germany (1999)Google Scholar
  10. 10.
    Brucherseifer, M., Nagel, M., Haring Bolivar, P., Kurz, H., Bossenhoff, A., Büttner, B.: Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77, 4049 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Opt. Lett. 20, 1716 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Ferguson, B., Wang, S., Gray, D., Abbott, D., Zhang, X.-C.: Terahertz imaging of biological tissue using a chirped probe pulse. In: Proceedings of SPIE: Electronics and Structures for MEMS II, vol. 4591, pp. 172–184. Adelaide, Australia (2001)Google Scholar
  13. 13.
    Han, P.Y., Cho, G.C., Zhang, X.-C.: Time domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242 (2000)ADSCrossRefGoogle Scholar
  14. 14.
  15. 15.
    Löffler, T., Kreß, M., Thomson, M., Hahn, T., Hasegawa, N., Roskos, H.G.: Comparative performance of terahertz emitters in amplifier-laser-based systems. Semicond. Sci. Technol. 20, S134 (2005)CrossRefGoogle Scholar
  16. 16.
    Cook, D.J., Hochastrasser, R.M.: In: Ultrafast Phenomena XII. Springer Series of Chemical Physics, vol. 66, p. 197 (2000)Google Scholar
  17. 17.
    Phillips, T.G., Keene, J.: Submillimeter astronomy. Proc. IEEE 80, 1662–1678 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Elisawitz, D. et al.: Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Proceedings of SPIE, vol. 4013. Munich, Germany (2000)Google Scholar
  19. 19.
    Melnick, G., et al.: The submillimeter wave astronomy satellite: science objectives and instrument description. Astrophys. J. Lett. 539(pt. 2), L77 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Herbst, E., Ann, E.: Rev. Phys. Chem. 46, R27 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Waters, J.W.: Submillimeter wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere. Proc. IEEE 80, 1679–1701 (1992)CrossRefGoogle Scholar
  22. 22.
    Feruson, B.: Horizons and Hurdles, Internal Report. Physics Department, Resselaer Polytechnic Institute (2001)Google Scholar
  23. 23.
    Han, P.Y., Zhang, X.-C.: Coherent, broadband mid-Infrared terahertz beam sensors. Appl. Phys. Lett. 73, 3049 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Leitenstofer, A., Hunsche, S., Shah, J., Nuss, M.C., Knox, W.H.: Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett. 74, 1516 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Nahata, A., Yardley, J.T., Heinz, T.: Free space electro-optic detection of continuous-wave terahertz radiation. Appl. Phys. Lett. 75, 2524 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Auston, D.H., Smith, P.R.: Generation and detection of millimeter waves by picosecond photoconductivity. Appl. Phys. Lett. 43, 631–633 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, X.-C., Jin, Y., Hewitt, T.D., Kingsley, L.E., Weiner, M.: THz radiation by carrier transport of optical rectification ultrafast electron. Optoelectron 14, 99 (1993)Google Scholar
  28. 28.
    Fattinger, C., Grischkowsky, D.: Appl. Phys. Lett. 54, 490 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    Faist, J., et al.: Quantum cascade laser. Science 264, 553 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    Vurgaftman, I., Meyer, J.R.: Optically pumped type-II interband terahertz lasers. Appl. Phys. Lett. 75, 879 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Mueller, E.R.: Terahertz radiation: applications and sources. The Industrial Physicist, AIP (Aug/Sep), 27–29 (2003)Google Scholar
  32. 32.
    Eisele, H.: Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100–300 GHz frequency range and above. IEEE Trans. Microw. Theory Tech. 48, 626 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Maiwald, F., et al.: Terahertz frequency multiplier chains based on planar Schottky diodes. Proc. SPIE Soc. Opt. Eng. 4855, 447 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Landau, L.D., Lifshitz, E.M.: Landau and Lifshitz course of theoretical physics. In: Electrodynamics of Continuous Media, vol. 8, 2nd edn. Pargamon, New York, ch. XIVGoogle Scholar
  35. 35.
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)Google Scholar
  36. 36.
    Hirshfield, J.L., Wachtell, J.M.: Electron cyclotron maser. Phys. Rev. Lett. 12, 533 (1964)ADSCrossRefGoogle Scholar
  37. 37.
    Bajaj, V.S., et al.: Dynamic nuclear polarization at 9 Tesla using a novel 250 GHz gyrotron microwave source. J. Magn. Reson. 160, 85 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Neil, G.R., Merminga, L.: Technical approaches for high-average-power free-electron lasers. Rev. Modern Phys. 74, 685 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    O’shea, P.G., Freud, H.P.: Free-electron lasers: status and applications. Science 292, 1853 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Jeong, Y.U., et al.: First lasing of the KAERI compact far-infrared free-electron laser driven by a magnetron-based microtron. Nucl. Inst. Meth. A 475, 4750 (2001)CrossRefGoogle Scholar
  41. 41.
    Goebel, P.M., Liou, R.R., Menninger, W.L., Zhai, X., Adler, E.A.: Development of linear traveling wave tubes for telecommunications. IEEE Trans. Electron Dev. 48, 7481 (2001a)Google Scholar
  42. 42.
    Dibb, D.R., Le Borgue, R.H.: 45 GHz TWT—recent advances. In: International Vacuum Electronics Conference, Montery, CA (2000)Google Scholar
  43. 43.
    Symons, R.S., Arfin, B., Boesenberg, R.E., Ferguson, P.E., Kirshner, M., Vaughn, J.R.M.: An experimental clustered cavity klystron. In: International Electron Devices Meeting Digest, p. 153. Washington DC (1987)Google Scholar
  44. 44.
    Gelvich, E.A., Borisov, L.M., Zhary, Y.V., Zakudayev, A.D., Pobedonostev, A.S., Poognin, V.I.: The new generation of high power multi-beam klystrons. IEEE Trans. Microw. Theory Tech. 41, 15 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    Goebel, D.M., Liou, R.R., Menninger, W.L., Zhai, X., Adler, E.A.: Development of linear traveling wave tubes for telecommunications applications. IEEE Trans. Electron Dev. 48, 74 (2001b)ADSCrossRefGoogle Scholar
  46. 46.
    Granastein, V.L., Parker, R.K., Armstrong, C.M.: Vacuum electronics at the dawn of the twenty-first century. Proc. IEEE 87, 702–716 (1999)CrossRefGoogle Scholar
  47. 47.
    Abrams, R.H., Levush, B., Mondelli, A.A., Parker, R.K.: Vacuum electronics at the dawn of the twenty-first century. Proc. IEEE 87, 702–716 (1999)CrossRefGoogle Scholar
  48. 48.
    Calame, J.P., Abe, D.K.: Applications of advanced materials technologies to vacuum electronics. Proc. IEEE 87, 840–864 (1999)CrossRefGoogle Scholar
  49. 49.
    Gitinz J.F.: Power Traveling Wave Tubes. Elsevier, New York (1965)Google Scholar
  50. 50.
    PopSci’s Best of What’s New 2007. http://www.popsci.com/popsci/flat/bown/2007/green/item_67.html. Retrieved 28 Feb 2010
  51. 51.
    US Patent 7629497—Microwave-based recovery of hydrocarbons and fossil fuels Issued 8 Dec 2009Google Scholar
  52. 52.
    1997 Industrial Assessment of the Microwave Power Tube Industry—US Department of DefenseGoogle Scholar
  53. 53.
  54. 54.
    Duke university free-electron laser laboratory. http://www.fel.duke.edu/
  55. 55.
    Duarte, F.J. (ed.): Tunable Lasers Handbook. Academic, New York (1995) Chapter 9Google Scholar
  56. 56.
  57. 57.
    Nusinovich, G.S., Cooke, S.J., Botton, M., Levush, B.: Wave coupling in sheet- and multiple-beam traveling-wave tubes. Phys. Plasmas 16, 063102 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Ives, R.L.: Microfabrication of high-frequency vacuum electron devices. IEEE Trans. Plasma Sci. 32, 1277 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    Zhang, H., Wang, J., Tong, C., Li, X., Wang, G.: Numerical studies of powerful terahertz pulse generation from a super-radiant surface wave oscillator. Phys. Plasmas 16(12), 123104 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    Ives, R.L., Kory, C., Read, M., Neilson, J., Caplan, M., Chubun, N., Schwartzkopf, S., Witherspoon, R.: Development of backward-wave oscillators for terahertz applications. In: Terahertz for Military Applications. Orlando, FL (2003)Google Scholar
  61. 61.
    Chen, L., Guo, H., Chen, H.-Y., Chu, K.-R.: IEEE Trans. Plasma Sci. 28(3), 626 (2000)Google Scholar
  62. 62.
    Naumenko, V.D., Schumann, K., Variv, D.M.: Miniature 1 kW, 95 GHz magnetrons. Elec. Lett. 35(22), 1960 (1999)Google Scholar
  63. 63.
    Hargreaves, T.A., Scheitrum, G.P., Bemis, T., Higgins, L.: IEDM 93, 349 (1993)Google Scholar
  64. 64.
    O’Shea, P.G., Freund, H.P.: Science 292(8), 1853 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    Ehrfeld, W., Schmidt, A.: J. Vac. Sci. Tech. B 16(6), 3526 (1998)CrossRefGoogle Scholar
  66. 66.
    Ruhmann, R., Pfeiffer, K., Falenski, M., Reuther, F., Engelke, R., Grutzner, G.: SU-8 - a high performance material for MEMS applications. Polym. MEMS 45 (2002)Google Scholar
  67. 67.
    Johnson, D.W., Jeffries, A., Minsek, D.W., Hurditch, R.J.: Improving the process capability of SU-8, part II. J. Photopolym. Sci. Tech. 14(5), 689 (2001)CrossRefGoogle Scholar
  68. 68.
    O’Brien, G.J., Monk, D.J., Najafi, K.: Device and process technologies for MEMS and microelectronics II. In: Chiao, J.-C. (ed.) Proc. SPIE, 315, vol. 4592 (2001)Google Scholar
  69. 69.
    Bhardwaj, J., Ashraf, J., MacQuarrie, A.: In: Symposium on Microstructures and Microfabricated Systems, Electrochemical Society (1997)Google Scholar
  70. 70.
    Liu K.X., Chiang C.-J., Heritage J.P.: Photoresponse of gated p-silicon field emitter array and correlation with theoretical models. J. Appl. Phys. 99, 034502 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    Technical data sheet (Ver 4.1) at the Kayaku-Microchem Web site (http://www.kayakumicrochem.jp)
  72. 72.
    Digital Technology Laboratory. 3805 Faraday Ave., Davis, CA, 95618. (530) 746-7400. http://www.dtlab.com
  73. 73.
    Shin, Y.-M., Barnett, L.R., Gamzina, D., Luhmann, N.C. Jr, Field M., Borwick, R.: Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching. Appl. Phys. Lett. 95, 181505 (2009)Google Scholar
  74. 74.
    Carlsten, B.E., Russell, S.J., Earley, L.M., Krawczyk, F.L., Potter, J.M., Ferguson, P., Humphries, S.: Technology development for a mmwave sheet-beam TWT. IEEE Trans. Plasma Sci. 33(1), 85–93 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    Srivastava V.: THz vacuum microelectronic devices. In: International Symposium on Vacuum Science and Technology (IVS2007)Google Scholar
  76. 76.
    Kory, C.L., Ives, L., Read, M., Phillips, P.: Novel TWT interaction circuits for high frequency applications. In: Proceedings of the IEEE International Vacuum Electronics Conference, pp. 51–52 (2004)Google Scholar
  77. 77.
    Arora, R.K., Bhat, B., Aditya, S.: Guided waves on a flattened sheath-helix. IEEE Trans. Microwave Theory Tech. MTT-25 71–72 (1977)Google Scholar
  78. 78.
    Fu, C.F., Wei, Y.Y., Wang, W.X., Gong, Y.B.: Dispersion characteristics of a rectangular helix slow-wave structure. IEEE Trans. Electron Devices 55(12) (2008)Google Scholar
  79. 79.
    Yoon, J.-B., Han, C.-H., Yoon, E., Kim, C.-K.: Monolithic fabrication of electroplated solenoid inductors using three-dimensional photolithography of a thick photoresist. Jpn. J. Appl. Phys., pt. 1, 37(12B) 7081–7085 (1998)Google Scholar
  80. 80.
    Yoon, J.-B., Kim, B.–I., Choi, Y.-S., Yoon, E.: 3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology. IEEE Trans. Microwave Theory Tech. 51(1), 279–288 (2003)Google Scholar
  81. 81.
    Kim, Y-J., Allen, M.G.: Surface micromachined solenoid inductors for high frequency applications. IEEE Trans. Comp. Packag. Manufact. Technol. 21(1) 26–33 (1998)Google Scholar
  82. 82.
    Mann, C.M.: Fabrication technologies for terahertz waveguide. In: Proceedings of 6th International Conference Terahertz Electronics 46–49 (1998)Google Scholar
  83. 83.
    Moon, S.W., Mann, C.M., Maddison, B.J., Turcu, I.C.E., Allot, R., Huq, S.E., Lisi, N.: Terahertz waveguide components fabricated using 3D X-ray microfabrication technique. Electron. Lett. 32, 1794–1795 (1996)Google Scholar
  84. 84.
    Collins, C.E., Miles, R.E., Pllard, R.D., Steenson, D.P., Digby, J.W., Parkhurst, G.M., Chamberain, J.M., Cronin, N.J., Davies, S.R., Bowen, J.W.: Technique for micro-machining millimeter-wave rectangular waveguide. Electron. Lett. 34, 996–997 (1998)Google Scholar
  85. 85.
    Collins, C.E., Miles, R.E., Digby, J.W., Parkhurst, G.M., Pollard, R.D., Chamberlain, J.M., Steenson, D.P., Cronin, N.J., Davies, S.R., Bowen, J.W.: A new micro-machined millimeter-wave and terahertz snaptogether rectangular waveguide technology. IEEE Microwave Guided Wave Lett. 9, 63–65 (1999)CrossRefGoogle Scholar
  86. 86.
    Song, J.J., Bajikar, S., Kang, Y.W., Kustom, R.L., Mancini, D.C., Nassiri, A., Lai, B., Feinerman, A.D., White, V.: LIGA fabrication of mm-wave accelerating cavity structures at the Advanced Photon Source (APS). In: Proceedings of Particle Accelerator Conference. pp. 461–463. (1997)Google Scholar
  87. 87.
    Dohler G., Gagne, D., Gallagher, D., Moats, R.: Serpentine waveguide TWT,” in Proceedings of technical digest international electron devices meeting. pp. 485–488 (1987)Google Scholar
  88. 88.
    Choi, J.J., Armstrong, C.M., Calise, F., Ganguly, A.K., Kyser, R.H., Park, G.S., Parker, R.K., Wood, F.: Experimental observation of coherent millimeterwave radiation in a folded waveguide employed with a gyrating electron beam. Phys. Rev. Lett. 76, 4273–4276 (1996)ADSCrossRefGoogle Scholar
  89. 89.
    Reynaerts, D.: A versatile technology for silicon by electro-discharge machining. Int. J. Jpn. Soc. Precision Eng. 33(2), 114–128 (1999)Google Scholar
  90. 90.
    Madou, M.: Fundamentals of microfabrication. CRC, Boca Raton (1997)Google Scholar
  91. 91.
    Masuzawa, T.: Wire electro-discharge grinding for micro-machining. Ann. CIRP (International Institute for Production Engineering Research) 34, 431–434 (1985)Google Scholar
  92. 92.
    Shin, Y.-M., Barnett, L.R.: Intense Wideband Terahertz Amplification Using Phase-Shifted Periodic Electron-Plasmon Coupling. Appl. Phys. Lett. 92, 091501 (2008)ADSCrossRefGoogle Scholar
  93. 93.
    Shin, Y.-M., Barnett, L.R., Luhmann Jr, N.C.: Strongly confined plasmonic wave propagation through an ultra-wideband staggered double grating waveguide. Appl. Phys. Lett. 93, 221504 (2008)ADSCrossRefGoogle Scholar
  94. 94.
    Shin, Y-M., Barnett, L.R., Luhmann, N.C. Jr.: Phase-shifted traveling wave tube circuit for ultra- wideband high power submillimeter wave generation. IEEE Trans. Elec. Dev. 56, 706 (2009)ADSCrossRefGoogle Scholar
  95. 95.
    Booske, J.H., McVey, B.D., Antonsen Jr, T.M.: Stability and confinement of nonrelativistic sheet electron beams with periodic cusped magnetic focusing. J. Appl. Phys. 73(9), 4140–4155 (1993)ADSCrossRefGoogle Scholar
  96. 96.
    Carlsten, B.E., Earley, L.M., Krawczyk, F.L., Russell, S.J., Potter, J.M., Ferguson, P., Humphries, S., Jr.: Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing. Phys. Rev. ST—Accel. Beams 8 (6) 062001-1–062001-14 (2005)Google Scholar
  97. 97.
    Carlsten, B.E.: Modal analysis and gain calculations for a sheet electron beam in a ridged waveguide slow-wave structure. Phys. Plasmas 9(12), 5088–5096 (2002)ADSCrossRefGoogle Scholar
  98. 98.
    Carlsten, B.E., Russell, S.J., Earley, L.M., Haynes, W.B., Krawczyk, F., Smirnova, E., Wang, Z.-F., Potter, J.M., Ferguson, P., Humphries, S.: MM-wave source development at Los Alamos. In: Proceedings of 7th Workshop High Energy Density High Power RF, AIP Conference, vol. 807, pp. 326–334 (2006)Google Scholar
  99. 99.
    Nguyen, K.T., Wright, E.L., Pershing, D.E., Levush, B.: Design of a G-band sheet-beam extended-interaction klystron. In: Proceedings of IEEE International Vacuum Electronics Conference, pp. 298–299 (2009)Google Scholar
  100. 100.
    Larsen, P.B., Abe, D.K., Cooke, S.J., Levush, B., Pchelnikov, Y.N.: Experimental characterization of a ka band sheet-beam coupled-cavity slow-wave structure. In: Proceedings of IEEE International Vacuum Electronics Conference, pp. 224–225 (2009)Google Scholar
  101. 101.
    Shin, Y.-M., Barnett, L.R., Luhmann Jr, N.C.: Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeterwave generation. IEEE Trans. Electron Device 56(5), 706–712 (2009)ADSCrossRefGoogle Scholar
  102. 102.
    Shin, Y.M., So, J.K., Jang, K.H., Won, J.H., Srivastava, A., Park, G.S.: Superradiant terahertz Smith–Purcell radiation from surface Plasmon excited by counterstreaming electron beams. Appl. Phys. Lett. 90(3), pp. 031502-1–031502-3 (2007)Google Scholar
  103. 103.
    Scheitrum, G., Caryotakis, G., Jensen, A., Burke, A., Haase, A., Jongewaard, E., Neubauer, M., Steele, B.: Fabrication and testing of a W-band sheet beam klystron. In: Proceedings of IEEE IVEC, 15–17 May 2007, pp. 1–2Google Scholar
  104. 104.
    Burke, A., Besong, V., Granlund, K., Jensen, A., Jongewaard, E., Phillips, R., Rauenbuehler, K., Scheitrum, G., Steele, R.: W-band sheet beam klystron PCM focusing design. In: Proceedings of IEEE International Vacuum Electron Conference, IEEE International Vacuum Electron Sources, 2006, pp. 485–486Google Scholar
  105. 105.
    Scheitrum, G., Caryotakis, G., Burke, A., Jensen, A., Jongewaard, E., Neubauer, M., Phillips, R., Steele, R.: W-band sheet beam klystron research at SLAC. In: Proceedings of International Vacuum Electron Conference, IEEE International Vacuum Electron Sources, pp. 481–482 (2006)Google Scholar
  106. 106.
    Scheitrum, G.: Design and construction of a W-band sheet beam klystron. In: Proceedings of 7th Workshop High Energy Density High Power RF, Kalamata, Greece, pp. 120–125 (2005)Google Scholar
  107. 107.
    Scheitrum, G., Caryotakis, G., Burke, A., Jensen, A., Jongewaard, E., Krasnykh, A., Neubauer, M., Phillips, R., Rauenbuehler, K.: W-band sheet beam klystron design. In: Proceedings of International Conference Infrared Millimeter Waves, 12th International Conference Terahertz Electronics, September 27–October 1, 2004, pp. 525–526Google Scholar
  108. 108.
    Urata, J., Goldstein, M., Kimmitt, M.F., Naumov, A., Platt, C., Walsh, J.E.: Superradiant Smith-Purcell emission. Phys. Rev. Lett. 80, 516 (1998)ADSCrossRefGoogle Scholar
  109. 109.
    Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)MathSciNetADSCrossRefGoogle Scholar
  110. 110.
    Becerra, L.R., Gerfen, G.J., Temkin, R.J., Singel, D.J., Griffin, R.G.: Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys. Rev. Lett. 71(21) 3561–3564 (1993)Google Scholar
  111. 111.
    Bajaj, V.S., Hornstein, M.K., Kreischer, K.E., Sirigiri, J.R., Woskov, P.P., Mak-Jurkauskas, M.L., Herzfeld, J., Temkin, R.J., Griffin, R.G.: 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J. Magn. Reson 189(2), 251–279 (2007)ADSCrossRefGoogle Scholar
  112. 112.
    Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Kreischer, K.E., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J.: Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator. IEEE Trans. Electron Devices 52(5), 798–807 (2005)ADSCrossRefGoogle Scholar
  113. 113.
    Hornstein, M.K., Bajaj, V.S., Grifiin, R.G., Temkin, R.J.: Continuous-wave operation of a 460 GHz second harmonic gyrotron oscillator. IEEE Trans. Plasma Sci. 34(3), 524–533 (2006)ADSCrossRefGoogle Scholar
  114. 114.
    Idehara, T., Kosuga, K., Agusu, L., Ikeda, R., Ogawa, I., Saito, T., Matsuki, Y., Ueda, K., Fujiwara, T.: Continuously frequency tunable high power sub-THz radiation source – Gyrotron FU CW VI 600 MHz DNP-NMR spectroscopy. J. Infrared Milli. Terahz Waves (2010). doi: 10.1007/s10762-010-9643-y Google Scholar
  115. 115.
    Idehara, T., Kosuga, K., Agusu, L., Ogawa, I., Takahashi, H., Smith, M.E., Dupree, R.: Gyrotron FU CW VII for 300 MHz and 600 MHz DNP-NMR spectroscopy. J. Infrared Milli. Terahz Waves (2010). doi: 10.1007/s10762-010-9637-9 Google Scholar
  116. 116.
    Granatstein, V.L., Nusinovich, G.S.: Detecting excess ionizing radiation by electromanetic breakdown in air. J. Appl. Phys. 108, 063304 (2010)ADSCrossRefGoogle Scholar
  117. 117.
    Glyavin, M.Y., Luchinin, A.G., Golubiatnikov, G.Y.: Generation of 1.5 kW, 1 THz Coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 100, 015101 (2008)ADSCrossRefGoogle Scholar
  118. 118.
    Nader, E., Ziolkowski, R.W.: Metamaterials: physics and engineering explorations. IEEE Press, Wiley (2006)Google Scholar
  119. 119.
    Zouhdi, S., Sihvola, A., Vinogradov, A.P.: Metamaterials and plasmonics: fundamentals, modelling, applications. Springer, New York (2008–2012)Google Scholar
  120. 120.
    Smith D.R.: What are electromagnetic metamaterials? Novel electromagnetic materials (2006-06-10)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of PhysicsNorthern Illinois UniversityDekalbUSA
  2. 2.Accelerator Physics Center (APC)Fermi National Accelerator Laboratory (FNAL)BataviaUSA
  3. 3.School of Electrical and Computer EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  4. 4.Center for THz-Bio Application Systems and Department of Physics and AstronomySeoul National UniversitySeoulKorea

Personalised recommendations