Skip to main content

Integrated Water Resources Management: Approach to Improve River Water Quality in the Western Bug River Basin

  • Conference paper
  • First Online:

Abstract

The Western Bug is a transboundary river with relevant environmental impact on the Vistula and the Baltic Sea. On entering the EU it must comply with the European Water Framework Directive, which demands an integrated water resources management (IWRM) on river basin scale. In this paper a systematic approach addressing the IWRM principles is proposed and applied for the upper part of the Western Bug. The existing pollution regime in the W.Bug catchment area to the gauge W.Bug – Kamianka Buska is assessed by application of a five step methodology including system screening, compilation of pressures, comparison with biological status, detailed process analysis of relevant interactions, definition of response measures based on a multi-criteria evaluation. Survey of previous studies, analysis of regional monitoring data, MFA modelling with MONERIS tool and carried measurements campaigns have shown, that in a row with extremely high point source input load on a watershed border (Lviv WWTP), such diffuse sources of nutrients as tile drained areas, rural areas without waste water treatment and erosion compose a nutrients input over an entire basin (approx. 2,500 km2) comparable to the mentioned point source. Moreover, the emission patterns partitioning is different for DIN and TP. During the measurements campaign the results of MFA modelling were supported and other deficits, such as extinction of the natural Poltva river ecosystem and nitrate pollution of the uppermost aquifers were found. Therefore, for detailed process analysis two main subsystems have been identified: (i) River Poltva and River Bug downstream from the confluence with the River Poltva, (ii) the uppermost aquifers. Already at this stage of study it was found that water quality formation in W.Bug is subject to acute deficits in the settlements sanitation systems in the basin while diffuse pollution due to agricultural activities is (under the current socio-economic conditions) of lower relevance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niemirycz T (1997) The Vistula river in Poland: environmental characteristics and historical perpective. In: Best GA, Bogacka T, Niemirycz E (eds) International river water quality: pollution and restoration. F & FN Spon, London. ISBN 0 412 21540 9

    Google Scholar 

  2. HELCOM (2005) Evaluation of transboundary pollution loads. Helsinki Commission, Helsinki

    Google Scholar 

  3. Zabokrytska MR, Khilchevskiy VK, Manchenko AP (2006) Hydroecological status of Zakhidnyj’ Buh Basin in the territory of the Ukraine. Nika Zentr, Kiev, p 184

    Google Scholar 

  4. TACIS (2001) Transboundary water quality monitoring and assessment: Bug and Latorica/Uzh. TACIS, Kyiv

    Google Scholar 

  5. UNECE (2007) Our waters: joining hands across borders – first assessment of transboundary rivers, lakes and groundwater. In: UNECE report

    Google Scholar 

  6. Bodnarchuk T (2009) Baseline assessment of water contamination in Ukrainian part of W.Bug basin. In: 23rd European regional conference, Lviv (Ukraine)

    Google Scholar 

  7. EWFD (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. European Parliament (Council), Brussels

    Google Scholar 

  8. Grambow M (2008) Wassermanagement. Friedr. Vieweg&Sohn Verlag| GWV Fachverlage GmbH, Wiesbaden

    Google Scholar 

  9. EEA (1999) Environmental indicators: Typology and Overview, European Environment Agency, Copenhagen

    Google Scholar 

  10. Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis, vol 1, Advanced methods in resource and waste management. Lewis publishers, Boca Raton

    Google Scholar 

  11. Blumensaat F, Tränckner J, Helm B, Krebs P, Kroll S, Thoeye C (2012) An adaptive framework to differentiate water quality impacts on a multi-scale level. Wat Sci Tech (submitted)

    Google Scholar 

  12. FWR (1998) Urban pollution management manual, 2nd edn. Foundation for Water Research, Marlow

    Google Scholar 

  13. BWK (2007) BWK-Merkblatt 7. Detaillierte Nachweisführung immissionsorientierter Anforderungen an Misch- und Niederschlagswassereinleitungen gemäß BWK-Merkblatt 3, Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (BWK) e.V., Kassel

    Google Scholar 

  14. Lammersen R (1997) Die Auswirkungen der Stadtentwässerung auf den Stoffhaushalt von Fließgewässern. Schriftenreihe für Stadtentwässerung und Gewässerschutz, vol Band 15. SuG Verlagsgesellschaft, Hannover

    Google Scholar 

  15. Merz R, Buck W (1997) Verfahren zur Entscheidungsfindung bei Mehrfachzielsetzung sowie Zielsysteme und Zielkriterien für die Planung und Bewertung wasserwirtschaftlicher Maßnahmen. Institut für Wasserwirtschaft und Kulturtechnik, Universität Karlsruhe, Karlsruhe

    Google Scholar 

  16. Blumensaat F, Tranckner J, Hoeft S, Jardin N, Krebs P (2009) Quantifying effects of interacting optimisation measures in urban drainage systems, Urban Water J 6(2):93–105. ISSN: 1573-062X

    Article  Google Scholar 

  17. Helm B, Tränckner J, Sieker H, Krebs P (2009) Flexibilität als Bewertungskriterium bei der Planung von Systemen der Regenentwässerung, Korrespondenz Abwasser, Abfall, 56(4):372–381

    Google Scholar 

  18. Blumensaat F, Helm B, Terekhanova T, Mykhnovych A, Tränckner J (2010) Modelling, moni-toring and management – integrated analysis of water quality aspects in the upper Western Bug basin. In: Resources of natural waters in Carpathian region, Lviv

    Google Scholar 

  19. Venohr M, Behrendt H, Fuchs S, Hirt U, Hofmann J, Opitz D, Scherer U, Wander R, Entwicklung, Dokumentation und Anwendung eines szenariofähigen Managementtools zur Beschreibung der Einträge, Retention und Frachten in Flusssystemen 2008, Leibniz Institut für Gewässerökologie und Binnenfischerei im FVB Berlin EV; Institut für Wasser und Gewässerentwicklung, Bereich Siedlungswasser- und Wassergütewirtschaft Universität Karlsruhe (TH) Berlin, Karlsruhe

    Google Scholar 

  20. FAO (2005) Fertilizer use by crop in Ukraine. FAO UNO, Rome

    Google Scholar 

  21. Zweynert U (2008) Moeglichkeiten und Grenzen bei der Modellierung von Naehrstoffeintraegen auf Flussgebietsebene – Untersuchungen am Beispiel des Models MONERIS. In: Faculty of Forest-, Geo and HydroSciences, Technische Universitaet Dresden, p 177

    Google Scholar 

  22. Ertel A-M, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova O, Berendonk T, Petzoldt T (2011) Heavy load and high potential. Anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci. doi:10.1007/s12665-011-1289-0

  23. Blumensaat F, Wolfram M, Krebs P (2011) Sewer model development under minimum data requirements. Environ Earth Sci. doi:10.1007/s12665-011-1146-1

  24. Reichert P et al (2001) River water quality model no. 1 (RWQM1): II. Biochemical process equations. Water Sci Technol 43(5):11–30. ISSN: 0273-1223

    Article  Google Scholar 

  25. Blumensaat F, Tränckner J, Helm B, Krebs P (2010) Адаптивная схема для оценки влияния разномасштабных факторов на качество воды |An adaptive scheme to evaluate impacts of multi-scale factors on water quality (in Russian). Sci J Perm State Univ 4(15):38–51

    Google Scholar 

Download references

Acknowledgements

Presented study is performed in a framework of project IWAS-Ukraine, funded by German Federal Ministry of Education and Research (FKZ: 02WM1027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Tränckner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tränckner, J., Helm, B., Blumensaat, F., Terekhanova, T. (2012). Integrated Water Resources Management: Approach to Improve River Water Quality in the Western Bug River Basin. In: Nałęcz, T. (eds) Transboundary Aquifers in the Eastern Borders of The European Union. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3949-9_6

Download citation

Publish with us

Policies and ethics