Skip to main content

Using Surface-Attached Organosilanes to Control and Understand Hydrophobicity and Superhydrophobicity

  • Chapter
Silicone Surface Science

Part of the book series: Advances in Silicon Science ((ADSS,volume 4))

Abstract

The preparative aspects of three different, but overlapping research programs are reviewed. Silane monolayers prepared using monofunctional silanes and random covalent attachment reactions are described that implicate molecular topography and flexibility as important issues in wetting. Surfaces prepared using multifunctional methylchlorosilanes are discussed. Samples similar to those prepared in the 1940s are shown to be the most hydrophobic (superhydrophobic) ever prepared. The chemical reactions of linear trimethylsilyl-terminated polydimethylsiloxanes with the surface of oxidized silicon are described. These reactions lead to covalently attached polydimethylsiloxane polymer chains and to hydrophobized inorganic surfaces. Linear silicones of this type (silicone oils) are generally not considered to be reactive with inorganic oxide surfaces.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-3876-8_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reference [2] is a leading reference to our reports on polymer surface modification and involves the surface chemistry of poly(ethylene terephthalate). Other polymers that we studied include poly(ether ether ketone), polychlorotrifluoroethylene, poly(vinylidene fluoride) and polytetrafluoroethylene.

  2. 2.

    For a more complete list of various reported water contact angles for trimethylsilyl monolayers, see Table 1 of Ref. [9].

References

  1. Gao L, McCarthy TJ (2009) Langmuir 25:14105

    Article  CAS  Google Scholar 

  2. Chen W, McCarthy TJ (1998) Macromolecules 31:3648

    Article  CAS  Google Scholar 

  3. Plueddemann EP (1982) Silane coupling agents. Plenum, New York

    Google Scholar 

  4. Mittal KL (ed) (1992) Silanes and other coupling agents. VSP, Utrecht

    Google Scholar 

  5. Leyden DE (1986) Silanes, surfaces and interfaces. Gordon and Breach, New York

    Google Scholar 

  6. Maoz R, Sagiv J (1984) J Colloid Interface Sci 100:465

    Article  CAS  Google Scholar 

  7. Maoz R, Sagiv J (1987) Langmuir 3:1034

    Article  CAS  Google Scholar 

  8. Maoz R, Sagiv J (1987) Langmuir 3:1045

    Article  CAS  Google Scholar 

  9. Wasserman SR, Tao Y-T, Whitesides GM (1989) Langmuir 5:1074

    Article  CAS  Google Scholar 

  10. Fadeev AY, McCarthy TJ (1999) Langmuir 15:3759

    Article  CAS  Google Scholar 

  11. Fadeev AY, McCarthy TJ (2000) Langmuir 16:7268

    Article  CAS  Google Scholar 

  12. Horr TJ, Ralston J, Smart R (1995) Colloids Surf A, Physicochem Eng Asp 97:183

    Article  CAS  Google Scholar 

  13. Korosi G, Kováts E (1981) Colloids Surf 2:315

    Article  CAS  Google Scholar 

  14. Fadeev AY, Soboleva OA, Summ BD (1997) Colloid J 59:273

    Google Scholar 

  15. Duchet J, Chabert B, Chapel JP, Jerard JF, Chovelon JM, Jaffrezic-Renault N (1997) Langmuir 13:2271

    Article  CAS  Google Scholar 

  16. Park J-M, Andrade JD (1988) In: Andrade JD (ed) Polymer Surface Dynamics. Plenum Press, New York, pp 67–68

    Chapter  Google Scholar 

  17. Park J-M, Kim JH (1994) J Colloid Interface Sci 168:103

    Article  CAS  Google Scholar 

  18. Drelich J, Miller JD, Good RJ (1996) J Colloid Interface Sci 179:37

    Article  CAS  Google Scholar 

  19. Lakowski J, Kitchener JA (1969) J Colloid Interface Sci 29:670

    Article  Google Scholar 

  20. Trau M, Murray BS, Grant K, Grieser F (1992) J Colloid Interface Sci 148:182

    Article  CAS  Google Scholar 

  21. Fadeev AY, McCarthy TJ (1999) Langmuir 15:7238

    Article  CAS  Google Scholar 

  22. Chen W, Fadeev AY, Hsieh MC, Oner D, Youngblood J, McCarthy TJ (1999) Langmuir 15:3395

    Article  CAS  Google Scholar 

  23. Gao L, McCarthy TJ, Zhang X (2009) Langmuir 25:14100

    Article  CAS  Google Scholar 

  24. Fogg GE (1944) Nature 154:515

    Article  Google Scholar 

  25. Cassie ABD, Baxter S (1945) Nature 155:21

    Article  CAS  Google Scholar 

  26. Schuyten HA, Reid DJ, Weaver JW, Frick JG (1948) Tex Res J 18:396

    Article  CAS  Google Scholar 

  27. Schuyten HA, Reid DJ, Weaver JW, Frick JG (1948) Tex Res J 18:490

    Article  CAS  Google Scholar 

  28. Bartell FE, Purcel WR, Dodd CG (1948) Discuss Faraday Soc 3:257

    Article  Google Scholar 

  29. Rochow EG (1945) J Am Chem Soc 67:963

    Article  CAS  Google Scholar 

  30. Rochow EG U.S. Patent 2,380,995, Aug. 7, 1945

    Google Scholar 

  31. Patnode WI U.S. Patent 2,306,222, Dec. 22, 1942

    Google Scholar 

  32. Gao L, McCarthy TJ (2006) J Am Chem Soc 128:9052

    Article  CAS  Google Scholar 

  33. Krumpfer JW, McCarthy TJ (2010) Faraday Discuss 146:103

    Article  CAS  Google Scholar 

  34. Gao L, McCarthy TJ (2008) Langmuir 24:362

    Article  CAS  Google Scholar 

  35. Jia X, McCarthy TJ (2003) Langmuir 19:2449

    Article  CAS  Google Scholar 

  36. Gao L, McCarthy TJ (2006) Langmuir 22:5998

    Article  CAS  Google Scholar 

  37. Gao L, McCarthy TJ (2007) J Am Chem Soc 129:3804

    Article  CAS  Google Scholar 

  38. Gao L, McCarthy TJ (2007) Langmuir 23:10445

    Article  CAS  Google Scholar 

  39. Krumpfer JW, McCarthy TJ (2011) Langmuir 27:11514

    Article  CAS  Google Scholar 

  40. Fadeev AY, McCarthy TJ (1999) J Am Chem Soc 121:12184

    Article  CAS  Google Scholar 

  41. Gao L, McCarthy TJ (2006) Langmuir 22:6234

    Article  CAS  Google Scholar 

  42. Kole S, Srivastava SK, Tripathy DK, Showmick AK (2003) J Appl Polym Sci 54:1329

    Article  Google Scholar 

  43. Lai SK, Batra A, Cohen C (2005) Polymer 46:4204

    Article  CAS  Google Scholar 

  44. Scott DW (1946) J Am Chem Soc 68:2294

    Article  CAS  Google Scholar 

  45. Patnode W, Wilcock DF (1946) J Am Chem Soc 68:358

    Article  CAS  Google Scholar 

  46. Hyde JF U.S. Patent 2,567,110, September 4, 1951

    Google Scholar 

  47. Kantor SW, Grubb WT, Ostoff RC (1954) J Am Chem Soc 76:5191

    Article  Google Scholar 

  48. Warrick EL (1990) Forty years of firsts. McGraw-Hill, New York, p 71

    Google Scholar 

  49. Bageli NN, Bryk MT (1981) Ukr Khim Zh 47:409

    Google Scholar 

  50. Xu S, Lehmann RG, Miller JR, Chandra G (1998) Environ Sci Technol 32:1199

    Article  CAS  Google Scholar 

  51. Hunter MJ, Gordon MS, Barry AJ, Hyde JF, Heidenreich RD (1947) Ind Eng Chem 39:1389

    Article  CAS  Google Scholar 

  52. Gao L, McCarthy TJ (2006) Langmuir 22:2966

    Article  CAS  Google Scholar 

  53. Gao L, McCarthy TJ (2007) Langmuir 23:3762

    Article  CAS  Google Scholar 

  54. Gao L, McCarthy TJ (2009) Langmuir 25:7249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Materials Research Science and Engineering Center (DMR-0213695) and Center for Hierarchical Manufacturing (CMMI-0531171) at the University of Massachusetts for support as well as 3M, Henkel, and Shocking Technologies for unrestricted funding. We also acknowledge the American Chemical Society for permission to reproduce figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. McCarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krumpfer, J.W., Gao, L., Fadeev, A.Y., McCarthy, T.J. (2012). Using Surface-Attached Organosilanes to Control and Understand Hydrophobicity and Superhydrophobicity. In: Owen, M., Dvornic, P. (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3876-8_4

Download citation

Publish with us

Policies and ethics