Skip to main content

Sum Frequency Generation Vibrational Spectroscopy of Silicone Surfaces & Interfaces

  • Chapter
Silicone Surface Science

Part of the book series: Advances in Silicon Science ((ADSS,volume 4))

  • 3581 Accesses

Abstract

While several general reviews of the applications of sum frequency generation vibrational spectroscopy (SFG) appear in the literature, none have focused specifically on the application of SFG to silicones. The unique and somewhat dichotomous surface properties of silicones, and their ever-increasing use in surface and interface-dependent applications such as lubricants, adhesives, micro-fluidic materials, sensors and matrices or scaffolds for nano-composites, calls for increased fundamental understanding that has motivated the use of SFG analysis. This chapter focuses on the combination of this uniquely surface sensitive tool to study applications using PDMS and other silicone-based materials. Because the interpretation of SFG spectra can be quite complex, many of these examples highlight how SFG can be coupled with complementary techniques to provide a more complete understanding of interfacial effects. Lastly, we conclude by providing a summary of strengths, limitations and potential future opportunities for application of SFG and complementary techniques to silicone-based materials.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-3876-8_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In Eq. (2.6), and the subsequent expressions that follow, we have assumed that all the vibrational modes, q, belong to a single type of molecular species or moiety. Although this is usually not true, the extension for the case of multiple types of species is trivial. The more general treatment would unnecessarily increase the complexity of the notation.

  2. 2.

    Although Eq. (2.10) is valid only at thermodynamic equilibrium, it can be generalized to accommodate non-equilibrium conditions by substituting for W some inherent value of adhesion G o usually regarded as rate-independent.

  3. 3.

    The increase in cure temperature arises from mild Pt catalyst inhibition due to complexation between the Pt catalyst complex and the electron-rich adjacent vinyl groups of MVS.

References

  1. Noll W (1968) Chemistry and technology of silicones. Academic Press, New York

    Google Scholar 

  2. Kim J, Chaudhury MK, Owen MJ (1999) Hydrophobicity loss and recovery of silicone HV insulation. IEEE Trans Dielectr Electr Insul 6:695

    Article  CAS  Google Scholar 

  3. Warrick EL (1990) Forty years of firsts: recollections of a Dow Corning pioneer. McGraw-Hill, New York

    Google Scholar 

  4. Shen YR (1996) A few selected applications of surface nonlinear optical spectroscopy. Proc Natl Acad Sci USA 93(22):12104–12111

    Article  CAS  Google Scholar 

  5. Chen Z, Shen YR, Somorjai GA (2002) Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu Rev Phys Chem 53(1):437–465

    Article  CAS  Google Scholar 

  6. Miranda PB, Shen YR (1999) Liquid interfaces: a study by sum-frequency vibrational spectroscopy. J Phys Chem B 103(17):3292–3307

    Article  CAS  Google Scholar 

  7. Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145

    Article  CAS  Google Scholar 

  8. Morita A, Ishiyama T (2008) Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys Chem Chem Phys 10(38):5801–5816

    Article  CAS  Google Scholar 

  9. Gracias DH, Chen Z, Shen YR, Somorjai GA (1999) Molecular characterization of polymer and polymer blend surfaces. Combined sum frequency generation surface vibrational spectroscopy and scanning force microscopy studies. Acc Chem Res 32:930–940

    Article  CAS  Google Scholar 

  10. Chen Z (2010) Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog Polym Sci 35(11):1376–1402

    Article  CAS  Google Scholar 

  11. Hirose C, Akamatsu N, Domen K (1992) Formulas for the analysis of the surface SFG spectrum and transformation coefficients of Cartesian SFG tensor components. Appl Spectrosc 46(6):1051–1072

    Article  Google Scholar 

  12. Hirose C, Akamatsu N, Domen K (1992) Formulas for the analysis of surface sum frequency generation spectrum by CH stretching modes of methyl and methylene groups. J Chem Phys 96(2):997–1004

    Article  CAS  Google Scholar 

  13. Shen YR (ed) (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  14. Zhuang X, Miranda PB, Kim D, Shen YR (1999) Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B 59(19):12632

    Article  CAS  Google Scholar 

  15. The theory section was reproduced with permission from Rangwalla H, Dhinojwala A (2004) J Adhesion 80:37–59

    CAS  Google Scholar 

  16. Watanabe N, Yamamoto H, Wada A, Domen K, Hirose C, Ohtake T, Mino N (1994) Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate. Spectrochim Acta, Part A, Mol Biomol Spectrosc 50(8–9):1529–1537

    Google Scholar 

  17. Simpson GJ, Rowlen KL (1999) An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution. J Am Chem Soc 121(11):2635–2636

    Article  CAS  Google Scholar 

  18. Harp GP, Gautam KS, Dhinojwala A (2002) Probing polymer/polymer interfaces. J Am Chem Soc 124(27):7908–7909

    Article  CAS  Google Scholar 

  19. Löbau J, Wolfrum K (1997) Sum-frequency spectroscopy in total internal reflection geometry: signal enhancement and access to molecular properties. J Opt Soc Am B 14(10):2505–2512

    Article  Google Scholar 

  20. Wilson PT, Briggman KA, Wallace WE, Stephenson JC, Richter LJ (2002) Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference. Appl Phys Lett 80(17):3084–3086

    Article  CAS  Google Scholar 

  21. Wang J, Chen C, Buck SM, Chen Z (2001) Molecular chemical structure on poly(methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B 105(48):12118–12125

    Article  CAS  Google Scholar 

  22. Gautam KS, Dhinojwala A (2001) Molecular structure of hydrophobic alkyl side chains at comb polymer-air interface. Macromolecules 34(5):1137–1139

    Article  CAS  Google Scholar 

  23. Gautam KS, Dhinojwala A (2002) Melting at alkyl side chain comb polymer interfaces. Phys Rev Lett 88(14):145501

    Article  CAS  Google Scholar 

  24. Harp GP, Rangwalla H, Yeganeh MS, Dhinojwala A (2003) Infrared-visible sum frequency generation spectroscopic study of molecular orientation at polystyrene/comb-polymer interfaces. J Am Chem Soc 125(37):11283–11290

    Article  CAS  Google Scholar 

  25. Harp GP, Rangwalla H, Li G, Yeganeh MS, Dhinojwala A (2006) Coupling of interfacial motion at polystyrene–alkane interfaces. Macromolecules 39(22):7464–7466

    Article  CAS  Google Scholar 

  26. Nanjundiah K, Dhinojwala A (2005) Confinement-induced ordering of alkanes between an elastomer and a solid surface. Phys Rev Lett 95(15):154301

    Article  Google Scholar 

  27. Nanjundiah K, Hsu PY, Dhinojwala A (2009) Understanding rubber friction in the presence of water using sum-frequency generation spectroscopy. J Chem Phys 130(2):024702

    Article  Google Scholar 

  28. Li G, Dhinojwala A, Yeganeh MS (2011) Interference effect from buried interfaces investigated by angular-dependent infrared—visible sum frequency generation technique. J Phys Chem C 115(15):7554–7561

    Article  CAS  Google Scholar 

  29. Schwab AD, Dhinojwala A (2003) Relaxation of a rubbed polystyrene surface. Phys Rev E 67(2):021802

    Article  Google Scholar 

  30. Oh-e M, Hong S-C, Shen YR (2002) Orientations of phenyl sidegroups and liquid crystal molecules on a rubbed polystyrene surface. Appl Phys Lett 80(5):784–786

    Article  CAS  Google Scholar 

  31. Prasad S, Hanne L, Dhinojwala A (2005) Thermodynamic study of a novel surface ordered phase above the bulk melting temperature in alkyl side chain acrylate polymers. Macromolecules 38(7):2541–2543

    Article  CAS  Google Scholar 

  32. Zhang D, Dougal SM, Yeganeh MS (2000) Effects of UV irradiation and plasma treatment on a polystyrene surface studied by IR—visible sum frequency generation spectroscopy. Langmuir 16(10):4528–4532

    Article  CAS  Google Scholar 

  33. Rangwalla H, Schwab AD, Yudumakan B, Yablon DG, Yeganeh MS, Dhinojwala A (2004) Molecular structure of an alkyl-side-chain polymer-water interface: origins of contact angle hysteresis. Langmuir 20:8625–8633

    Article  CAS  Google Scholar 

  34. Lachat V, Varshney V, Dhinojwala A, Yeganeh MS (2009) Molecular origin of solvent resistance of polyacrylonitrile. Macromolecules 42(18):7103–7107

    Article  CAS  Google Scholar 

  35. Li G, Dhinojwala A, Yeganeh MS (2009) Interfacial structure and melting temperature of alcohol and alkane molecules in contact with polystyrene films. J Phys Chem B 113(9):2739–2747

    Article  CAS  Google Scholar 

  36. Wilson PT, Richter LJ, Wallace WE, Briggman KA, Stephenson JC (2002) Correlation of molecular orientation with adhesion at polystyrene/solid interfaces. Chem Phys Lett 363(1–2):161–168

    Article  CAS  Google Scholar 

  37. Kurian A, Prasad S, Dhinojwala A (2010) Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules 43(5):2438–2443

    Article  CAS  Google Scholar 

  38. Clancy TC, Jang JH, Dhinojwala A, Mattice WL (2001) Orientation of phenyl rings and methylene bisectors at the free surface of atactic polystyrene. J Phys Chem B 105(46):11493–11497

    Article  CAS  Google Scholar 

  39. Tsige M, Soddemann T, Rempe SB, Grest GS, Kress JD, Robbins MO, Sides SW, Stevens MJ, Webb E (2003) Interactions and structure of poly(dimethylsiloxane) at silicon dioxide surfaces: electronic structure and molecular dynamics studies. J Chem Phys 118(11):5132–5142

    Article  CAS  Google Scholar 

  40. Yurdumakan B, Harp GP, Tsige M, Dhinojwala A (2005) Template-induced enhanced ordering under confinement. Langmuir 21(23):10316–10319

    Article  CAS  Google Scholar 

  41. Brook MA (2000) Silicon in organic, organometallic and polymer chemistry. Wiley, New York

    Google Scholar 

  42. Skeist I (ed) (1990) Handbook of Adhesive, 3rd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  43. Ahn D, Lipp ED, McMillan CS (2003) Improved self-priming silicone adhesives through selective interfacial enrichment. In: Proceedings 26th annual meeting of the adhesion society. Adhesion Society, Blacksburg, pp 430–432

    Google Scholar 

  44. Ahn D, Shephard NE, Olney PA, McMillan CS (2007) Thermal gradient enabled XPS analysis of PDMS elastomer adhesion to polycarbonate. Macromolecules 40(11):3904–3906

    Article  CAS  Google Scholar 

  45. Smith AL (ed) (1991) The analytical chemistry of silicones. Wiley-Interscience, New York

    Google Scholar 

  46. Zhou X, Hu S, Shephard NE, Ahn D (2003) Diffusion-controlled titanate-catalyzed condensation of alkoxysilanes in nonpolar solvents. In: Synthesis and properties of silicones and silicone-modified materials. ACS symposium series, vol 838, pp 375–387

    Chapter  Google Scholar 

  47. Comyn J, de Buyl F, Comyn TP (2003) Diffusion of adhesion promoting and crosslinking additives in an uncured silicone sealant. Int J Adhes Adhes 23(6):495–497

    Article  CAS  Google Scholar 

  48. Comyn J, de Buyl F, Shephard NE, Subramaniam C (2002) Kinetics of cure crosslink density and adhesion of water-reactive alkoxysilicone sealants. Int J Adhes Adhes 22(5):385–393

    Article  CAS  Google Scholar 

  49. Gordon GVL, Loren D (2008) A generalized cure model for one-part RTV sealants and adhesives. In: Proceedings of the annual meeting of the adhesion society, pp 298–300

    Google Scholar 

  50. Ismail AE, Grest GS, Heine DR, Stevens MJ, Tsige M (2009) Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water. Macromolecules 42(8):3186–3194

    Article  CAS  Google Scholar 

  51. Chen CY, Wang J, Chen Z (2004) Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG. Langmuir 20:10186–10193

    Article  CAS  Google Scholar 

  52. Lee SH, Ruckenstein E (1987) Surface restructuring of polymers. J Colloid Interface Sci 120(2):529–536

    Article  Google Scholar 

  53. Park JY, Ahn D, Choi YY, Hwang CM, Takayama S, Lee SH, Lee S-H (2011) Surface chemistry modification of PDMS elastomers with boiling water improves cellular adhesion. Manuscript submitted for publication

    Google Scholar 

  54. Kurian A, Prasad S, Dhinojwala A (2010) Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules 43:2438–2443

    Article  CAS  Google Scholar 

  55. Yurdumakan B, Nanjundiah K, Dhinojwala A (2006) Origin of higher friction for elastomers sliding on glassy polymers. J Phys Chem C 111(2):960–965

    Article  Google Scholar 

  56. Ye S, Majumdar P, Chisholm B, Stafslien S, Chen Z (2010) Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy. Langmuir 26(21):16455–16462

    Article  CAS  Google Scholar 

  57. Chen Z, Ward R, Tian Y, Eppler AS, Shen YR, Somorjai GA (1999) Surface composition of biopolymer blends biospan-SP/phenoxy and biospan-F/phenoxy observed with SFG, XPS, and contact angle goniometry. J Phys Chem B 103(15):2935–2942

    Article  CAS  Google Scholar 

  58. Ye H, Gu Z, Gracias DH (2006) Kinetics of ultraviolet and plasma surface modification of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy. Langmuir 22(4):1863–1868

    Article  CAS  Google Scholar 

  59. Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater 12(6):1591–1596

    Article  CAS  Google Scholar 

  60. Schnyder B, Lippert T, Kötz R, Wokaun A, Graubner V-M Nuyken O UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry. Surf Sci 532–535, 1067–1071 (2003)

    Article  Google Scholar 

  61. Graubner V-M, Jordan R, Nuyken O, Schnyder B, Lippert T, Kötz R, Wokaun A (2004) Photochemical modification of cross-linked poly(dimethylsiloxane) by irradiation at 172 nm. Macromolecules 37(16):5936–5943

    Article  CAS  Google Scholar 

  62. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254(2):306–315

    Article  CAS  Google Scholar 

  63. Harp GP, Dhinojwala A (2005) Direct probe of interfacial structure during mechanical contact between two polymer films using infrared visible sum frequency generation spectroscopy. J Adhes 81(3–4):371–379

    CAS  Google Scholar 

  64. Schallamach A (1963) A theory of dynamic rubber friction. Wear 6(5):375–382

    Article  Google Scholar 

  65. Kurian A, Prasad S, Dhinojwala A (2010) Direct measurement of acid-base interaction energy at solid interfaces. Langmuir 26(23):17804–17807

    Article  CAS  Google Scholar 

  66. Roberts AD, Tabor D (1971) The extrusion of liquids between highly elastic solids. Proc R Soc London, Ser A 325(1562):323–345

    Article  CAS  Google Scholar 

  67. Israelachvili JN (1991) Intermolecular & surface forces, 2nd edn. Academic Press, San Diego

    Google Scholar 

  68. Andrews EH, Kinloch AJ (1973) Proc R Soc London, Ser A 332:385

    Article  CAS  Google Scholar 

  69. Gent AN, Schultz J (1972) J Adhes 3:281

    Article  CAS  Google Scholar 

  70. Ferry JD (ed) (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  71. Roan GA (2003) Advances in acrylic hybrid technology. Adhes Sealants Industry 2003:36–40

    Google Scholar 

  72. Schmidt RG, Gordon GV, Dreiss CA, Cosgrove T, Krukonis VJ, Williams K, Wetmore PM (2010) A critical size ratio for viscosity reduction in poly(dimethylsiloxane)-polysilicate nanocomposites. Macromolecules 43(23):10143–10151

    Article  CAS  Google Scholar 

  73. Gordon GV, Schmidt RG, Quintero M, Benton NJ, Cosgrove T, Krukonis VJ, Williams K, Wetmore PM (2010) Impact of polymer molecular weight on the dynamics of poly(dimethylsiloxane)-polysilicate nanocomposites. Macromolecules 43(23):10132–10142

    Article  CAS  Google Scholar 

  74. Gordon GV, Perz SV, Tabler RL, Stasser JL, Owen MJ, Tonge JS (1998) Silicone release coatings: a closer look at release mechanisms. www.dowcorning.com/content/publishedlit/26-016.pdf. Dow Corning Corporation, Midland, MI

  75. Plueddeman EP (ed) (1991) Silane coupling agents, 2nd edn. Plenum Press, New York

    Google Scholar 

  76. Chen C, Loch CL, Wang J, Chen Z (2003) Different molecular structures at polymer/silane interfaces detected by SFG. J Phys Chem B 107:10440–10445

    Article  CAS  Google Scholar 

  77. Chen C, Wang J, Loch CL, Ahn D, Chen Z (2004) Demonstrating the feasibility of monitoring the molecular-level structures of moving polymer/silane interfaces during silane diffusion using SFG. J Am Chem Soc 126(4):1174–1179

    Article  CAS  Google Scholar 

  78. Mine K, Nishio M, Sumimura S (1977) Heat curable organopolysiloxane compositions containing adhesion additives. US Patent 4,033,924, July 5

    Google Scholar 

  79. Schulz JR (1978) Self-adhering silicone compositions and preparations thereof. US 4,087,585, May 2

    Google Scholar 

  80. Gellman AJ, Naasz BM, Schmidt RG, Chaudhury MK, Gentle TM (1990) Secondary neutral mass spectrometry studies of germanium-silane coupling agent-polymer interphase. J Adhes Sci Technol 4(7):597–601

    Article  CAS  Google Scholar 

  81. Gentle TE, Schmidt RG, Naasz BM, Gellman AJ, Gentle TM (1992) Organofunctional silanes as adhesion promoters: direct characterization of the polymer/silane interphase. In: Mittal KL (ed) Silanes and other coupling agents. VSP, Utrecht, pp 295–304

    Google Scholar 

  82. Loch CL, Ahn D, Vazquez AV, Chen Z (2007) Diffusion of one or more components of a silane adhesion-promoting mixture into poly(methyl methacrylate). J Colloid Interface Sci 308(1):170–175

    Article  CAS  Google Scholar 

  83. Loch CL, Ahn D, Chen C, Wang J, Chen Z (2004) Sum frequency generation studies at poly(ethylene terephthalate)/silane interfaces: hydrogen bond formation and molecular conformation determination. Langmuir 20:5467–5473

    Article  CAS  Google Scholar 

  84. Loch CL, Ahn D, Chen CY, Chen Z (2006) Sum frequency generation vibrational spectroscopic studies on a silane adhesion promoting mixture at a polymer interface. J Phys Chem B 110:914–918

    Article  CAS  Google Scholar 

  85. Vázquez AV, Boughton AP, Shephard NE, Rhodes SM, Chen Z (2009) Molecular structures of the buried interfaces between silicone elastomer and silane adhesion promoters probed by sum frequency generation vibrational spectroscopy and molecular dynamics simulations. ACS Appl Mater Interfaces 2(1):96–103

    Article  Google Scholar 

  86. Loch CL, Ahn D, Chen Z (2005) Polymer-silane interactions probed by sum frequency generation vibrational spectroscopy. J Adhes 81:319–345

    Article  CAS  Google Scholar 

  87. Vázquez AV, Shephard NE, Steinecker CL, Ahn D, Spanninga S, Chen Z (2009) Understanding molecular structures of silanes at buried polymer interfaces using sum frequency generation vibrational spectroscopy and relating interfacial structures to polymer adhesion. J Colloid Interface Sci 331(2):408–416

    Article  Google Scholar 

  88. Meredith JC, Karim A, Amis EJ (2000) High-throughput measurement of polymer blend phase behavior. Macromolecules 33(26):5760–5762

    Article  CAS  Google Scholar 

  89. Chen H-Y, McClelland AA, Chen Z, Lahann J (2008) Solventless adhesive bonding using reactive polymer coatings. Anal Chem 80(11):4119–4124

    Article  CAS  Google Scholar 

  90. Hartmann-Thompson C, Keeley DL, Dvornic PR, Keinath SE, McCrea KR (2007) Hydrogen-bond acidic polyhedral oligosilsesquioxane filled polymer coatings for surface acoustic wave sensors. J Appl Polym Sci 104(5):3171–3182

    Article  CAS  Google Scholar 

  91. Lu X, Li D, Kristalyn CB, Han J, Shephard N, Rhodes S, Xue G, Chen Z (2009) Directly probing molecular ordering at the buried polymer/metal interface. Macromolecules 42(22):9052–9057

    Article  CAS  Google Scholar 

  92. Tschierske C (1998) Non-conventional liquid crystals-the importance of micro-segregation for self-organisation. J Mater Chem 8(7):1485–1508

    Article  CAS  Google Scholar 

  93. Yoon H, Agra-Kooijman DM, Ayub K, Lemieux RP, Kumar S (2011) Direct observation of diffuse cone behavior in de Vries smectic-A and -C phases of organosiloxane mesogens. Phys Rev Lett 106(8):087801

    Article  Google Scholar 

  94. Park JY, Hwang CM, Lee S-H (2008) Effective methods to improve the biocompatibility of poly(dimethylsiloxane). BioChip J 2(1):39–43

    Google Scholar 

  95. Smith JP, Hinson-Smith V (2004) Product review: SFG coming of age. Anal Chem 76(15):287 A-290

    Article  Google Scholar 

  96. Richter LJ, Petralli-Mallow TP, Stephenson JC (1998) Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses. Opt Lett 23(20):1594–1596

    Article  CAS  Google Scholar 

  97. Vazquez AV, Shephard NE, Steinecker CL, Ahn D, Spanninga S, Chen Z (2009) Understanding molecular structures of silanes at buried polymer interfaces using sum frequency generation vibrational spectroscopy and relating interfacial structures to polymer adhesion. J Colloid Interface Sci 331(2):408–416

    Article  CAS  Google Scholar 

  98. Hernandez M, Chinwangso P, Cimatu K, Srisombat L-O, Lee TR, Baldelli S (2011) Chemical imaging and distribution analysis of mono-, bi-, and tridentate alkanethiol self-assembled monolayers on gold by sum frequency generation imaging microscopy. J Phys Chem C 115(11):4688–4695

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge helpful discussions with Professor Zhan Chen (DA) and support from Dow Corning Corporation (DA) and the National Science Foundation (AD, DA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongchan Ahn or Ali Dhinojwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ahn, D., Dhinojwala, A. (2012). Sum Frequency Generation Vibrational Spectroscopy of Silicone Surfaces & Interfaces. In: Owen, M., Dvornic, P. (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3876-8_2

Download citation

Publish with us

Policies and ethics