Regulatory Approvals of GM Plants (Insect Resistant) in European Agriculture: Perspectives from Industry

  • Jaime Costa
  • Concepcion Novillo
Part of the Progress in Biological Control book series (PIBC, volume 14)


Selection of plant cultivars with improved defense systems to attacks from pests or diseases has been traditionally recommended for sustainable crop production and integrated pest management (IPM). Since the commercial introduction of genetically modified (GM) plants in 1996, modern biotechnology has enabled the addition of insect-resistant traits to varieties of cotton, maize and other crops, providing reliable protection against target pests, with minimal impact on beneficial organisms. The introduction of GM varieties has been subject to environmental risk evaluations more stringent than those required for conventionally bred varieties. Repeated use over the years confirms benefits for farmers and for the environment when deployed with recommended insect resistance management (IRM) strategies. In the European Union (EU), however, regulation complexity threatens to overwhelm any benefits through the additional requirements of traceability, labeling, coexistence, socio-economic issues and liability. A discussion of these issues will show where the regulatory process can be improved.


European Union Genetic Modification Genetic Modification Crop European Food Safety Authority Environmental Risk Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Ivo O. Brants, T.G.A. Clemence, Gary F. Hartnell, Graham P. Head and David Songstad for their valuable comments to the manuscript.


  1. Apel A (2010) The costly benefits of opposing agricultural biotechnology. New Biotechnology 27:635–640Google Scholar
  2. Barros E, Lezar S, Anttonen MJ, van Dijk JP, Röhling RM, Kok EJ, Engel K-H (2010) Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol J 8:436–451PubMedCrossRefGoogle Scholar
  3. Bartsch D, Schmitz G (2002) Recent experience with biosafety research and post-market environmental monitoring in risk management of plant biotechnology derived crops. In: Thomas JA, Fuchs RL (eds) Biotechnology and safety assessment. Academic, New YorkGoogle Scholar
  4. Bartsch D, Buhk HJ, Engel KH, Ewen C, Flachowsky G, Gathmann A, Heinze P, Koziolek C, Leggewie G, Meisner A, Neemann G, Rees U, Scheepers A, Schmidt S, Schulte E, Sinemus K, Vaasen A (2009) BEETLE final report on long-term effects of genetically modified (GM) crops on health and the environment (including biodiversity). European Commission, BrusselsGoogle Scholar
  5. Batista R, Saibo N, Lourenço T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes tan transgene insertion. PNAS 105:3640–3645PubMedCrossRefGoogle Scholar
  6. Beever DE, Kemp CF (2000) Safety issues associated with the DNA in animal feed derived from genetically modified crops. A review of scientific and regulatory procedures. Nutr Abstr Rev Ser B: Livest Feeds Feeding 70:175–182Google Scholar
  7. Brookes G, Barfoot P (2010) Global impact of biotech crops: environmental effects, 1996–2008. AgBioForum 13:76–94Google Scholar
  8. Brookes G, Yu THE, Tokgoz S, Elobeid A (2010) The production and price impact of biotech corn, canola, and soybean crops. AgBioForum 13:25–52Google Scholar
  9. Carvalho PC, Quedas F, Rocha F (2008) Manual de boas práticas de coexistencia para a cultura do milho. Direcção-Geral de Agricultura e Desenvolvimento Rural (DGADR). Ministerio de Agricultura, Desenvolvimento Rural e das Pescas, Lisboa, 31 pGoogle Scholar
  10. Castañera P, Ortego F, Hernández-Crespo P, Farinós GP, Albajes R, Eizaguirre M, López C, Lumbierres B, Pons X (2010) El maíz Bt en España: experiencia tras 12 años de cultivo. PHYTOMA España 164:25–28Google Scholar
  11. Christou P, Capell T (2009) Transgenic crops and their applications for sustainable agriculture and food security. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CABI, WallingfordGoogle Scholar
  12. Coll A, Nadal A, Palaudelmàs M, Messeguer J, Melé E, Puigdomènech P, Pla M (2008) Lack of repeatable differential expression patterns between MON 810 and comparable commercial varieties of maize. Plant Mol Biol 68:105–117PubMedCrossRefGoogle Scholar
  13. Costa J, Novillo C (2009) Regulación y conocimiento sobre plantas transgénicas. In: Dorado G, Jorrín J, Tena M, Fernández-Reyes E (eds) Biotecnología. Universidad de Córdoba, SpainGoogle Scholar
  14. Cubero JI (2003) Introducción a la mejora genética vegetal, 2nd edn. Mundi-Prensa, MadridGoogle Scholar
  15. Del Monte JP, Aguado PL (2003) Survey of the non native plant species in the Spanish Iberia in the period 1975–2002. Flora Mediterr 13:241–259Google Scholar
  16. Diamond J (1998) Guns, germs and steel. Random House Mondadori, BarcelonaGoogle Scholar
  17. Escobar J, Quintana J (2008) Reducción de riesgos sanitarios con el cultivo de un maíz transgénico. In: Libro de Resúmenes XIII Congreso Anual en Ciencia y Tecnología de los Alimentos, Madrid, Spain pp 29–31Google Scholar
  18. García Olmedo F (1998) La tercera revolución verde. Plantas con luz propia. Editorial Debate, MadridGoogle Scholar
  19. García Olmedo F (2009) El ingenio y el hambre. De la revolución agrícola a la transgénica. Ed. Crítica, BarcelonaGoogle Scholar
  20. Husken A, Ammann K, Messeguer J, Papa R, Robson P, Schiemann J, Squire G, Stamp P, Sweet J, Wilhelm R (2007) A major European synthesis of data on pollen and seed mediated gene flow in maize in the SIGMEA project. In: Third international conference on coexistence between genetically modified (GM) and non-GM based agricultural supply chains, vol Book of Abstracts. Sevilla, SpainGoogle Scholar
  21. Hutchinson WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL, Kaster LV, Hunt TE, Wright RJ, Pecinovsky K, Rabaey TL, Flood BR, Raun ES (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225CrossRefGoogle Scholar
  22. James C (2009) Global status of commercialized biotech/GM crops. ISAAA Brief 41.Ithaca, NYGoogle Scholar
  23. James C (2010) Global status of commercialized biotech/GM crops. ISAAA Brief 42.Ithaca, NYGoogle Scholar
  24. Kessler C, Economidis I (2001) EC-sponsored research on safety of genetically modified organisms. European Commission. Community Research, Brussels, 246 pGoogle Scholar
  25. Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477PubMedCrossRefGoogle Scholar
  26. Messeguer J, Peñas G, Ballester J, Bas M, Serra J, Salvia J, Palaudelmàs M, Melé E (2006) Pollen-mediated gene flow in maize in real situations of coexistence. Plant Biotechnol J 4:633–645PubMedCrossRefGoogle Scholar
  27. Messeguer J, Palaudelmàs M, Peñas G, Serra J, Salvia J, Ballester J, Bas M, Pla M, Nadal A, Melé E (2007) Three year study of a real situation of coexistence in maize. In: Third international conference on coexistence between genetically modified (GM) and non-GM based agricultural supply chains. Book of Abstracts, pp 93–96Google Scholar
  28. Moses V (2010) Do European consumers buy GMO foods? In: A decade of EU-funded GMO research (2001–2010). Project information. European Commission, European Research Area, Food, Agriculture & Fisheries & Biotechnology, Brussels, pp 240–245Google Scholar
  29. Munkwold GP, Hellmich RL, Showers WB (1997) Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology 87:1071–1077CrossRefGoogle Scholar
  30. Novillo C, Soto J, Costa J (1999) Resultados en España con variedades de algodón, protegidas genéticamente contra las orugas de las cápsulas. Bol San Veg Plagas 25:383–393Google Scholar
  31. Novillo C, Fernández-Anero FJ, Costa J (2003) Resultados en España con variedades de maíz derivadas de la línea MON 810, protegidas genéticamente contra taladros. Bol San Veg Plagas 29:427–439Google Scholar
  32. Novillo C, Ojembarrena A, Tribó F, Alcalde E, Biosca D, Aragón M, Costa J (2007) Nine years of consumer-driven coexistence for GM-crops in Spain. In: Third international conference on coexistence between genetically modified (GM) and non-GM based agricultural supply chains. Book of Abstracts, pp 31–34Google Scholar
  33. Ortega JI (2006) The Spanish experience with co-existence after 8 years of cultivation of GM maize. In: Proceedings of the Co-existence of GM, conventional and organic crops, Freedom of Choice Conference, Vienna, Apr 2006Google Scholar
  34. Ortego F, Pons X, Albajes R, Castañera P (2009) European commercial genetically modified plantings and field trials. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CAB International, WallingfordGoogle Scholar
  35. Plan D, Van den Eede G (2010) The EU legislation on GMOs. An overview. JRC scientific and technical reports. Institute for Health and Consumer protection. European CommissionGoogle Scholar
  36. Potrykus I (2010) Regulation must be revolutionized. Nature 466:561PubMedCrossRefGoogle Scholar
  37. Raffensperger C, Barret K (2001) In defense of the precautionary principle. Nat Biotechnol 19:811–812PubMedCrossRefGoogle Scholar
  38. Ridley M (2010) The rational optimist. How prosperity evolves. Harper Business, New YorkGoogle Scholar
  39. Rodrigo-Simón A, de Maagd RA, Avilla C, Bakker PL, Molthoff J, González-Zamora JE, Ferré J (2006) Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological and biochemical analysis. Appl Environ Microbiol 72:1595–1603PubMedCrossRefGoogle Scholar
  40. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71PubMedCrossRefGoogle Scholar
  41. Serra J, Voltas J, López A, Capellades G, Salvia J, Coll A, Esteve T, Baixas S, Repiso C, Marrupe S (2008) Les micotoxines en el cultiu del blat de moro per a gra. Dossier Tècnic del DARP. Generalitat de Catalunya 27:15–18Google Scholar
  42. Skevas T, Fevereiro P, Wesseler J (2010) Coexistence regulations and agriculture production: a case study of five Bt maize producers in Portugal. Ecol Econ 69:2402–2408CrossRefGoogle Scholar
  43. Stein AJ, Rodríguez-Cerezo E (2009) The global pipeline of new GM crops. Implications of asynchronous approval for international trade. JRC scientific and technical reports. Institute for Prospective Technological studies. European CommissionGoogle Scholar
  44. Tabashnik BE, Carrière Y (2009) Insect resistance to genetically modified crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CABI, WallingfordGoogle Scholar
  45. Tencalla FG, Nickson TE, García-Alonso M (2009) Environmental risk assessment. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CABI, WallingfordGoogle Scholar
  46. Wolfenbarger LL, Naranjo SE, Lundgreen JG, Bitzer RJ, Watrud LS (2008) Bt crops effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3:e2118PubMedCrossRefGoogle Scholar
  47. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-Carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Monsanto Agricultura España S.L.MadridSpain

Personalised recommendations