Use of RNAi for Control of Insect Crop Pests

  • Luc Swevers
  • Guy Smagghe
Part of the Progress in Biological Control book series (PIBC, volume 14)


RNA interference (RNAi) refers to double-stranded RNA (dsRNA)-mediated gene silencing. Since its discovery, it has developed as a powerful tool in functional genomics, and to date it is widely used in insect genetic research. It is certain that the discovery of RNAi has augmented our understanding of ~20–30 nucleotide non-coding small RNA as critical regulators of gene expression and genome stability. Besides, gene silencing through RNAi has revolutionized the study of gene function, particularly in non-model and non-genome sequenced insect species, which is the case for most agricultural pest insects. Without doubt, it contains great potential for diverse applications in fundamental and applied research, for instance in gene therapy in medicine and disease control. More recent, a new hot point is to find a feasible way to use RNAi as an alternative method for practical application of crop protection to combat pest insects.


Insecticide Resistance Midgut Epithelium Boll Weevil Lepidopteran Insect RNAi Machinery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge support for their research by the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Flemish agency for Innovation by Science and Technology (IWT-Vlaanderen), the Special Research Funds of Ghent University, in Belgium, and the General Secretariat for Research and Technology, Hellenic Republic Ministry of National Education and Religious Affairs, in Greece. Luc Swevers acknowledges the support with a scholarship for foreign researcher by the Special Research Fund of Ghent University.


  1. Arimatsu Y, Kotanib E, Sugimurab Y, Furusawa T (2007) Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochem Mol Biol 37:176–183PubMedCrossRefGoogle Scholar
  2. Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651PubMedCrossRefGoogle Scholar
  3. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikawa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326PubMedCrossRefGoogle Scholar
  4. Bautista MAM, Miyata T, Miura K, Tanaka T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46PubMedCrossRefGoogle Scholar
  5. Bellés X (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128PubMedCrossRefGoogle Scholar
  6. Caljon G, De Ridder K, De Baetselier P, Coosemans M, Van den Abbeele J (2010) Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLoS One 5:e9671PubMedCrossRefGoogle Scholar
  7. Cancino-Rodezno A, Alexander C, Villaseñor R, Pacheco S, Porta H, Pauchet Y, Soberón M, Gill SS, Bravo A (2010) The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem Mol Biol 40:58–63PubMedCrossRefGoogle Scholar
  8. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedCrossRefGoogle Scholar
  9. Chen J, Tang B, Chen H, Yao Q, Huang X, Chen J, Zhang D, Zhang W (2010) Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS One 5:e10133PubMedCrossRefGoogle Scholar
  10. Gantier MP, Williams BRG (2009) siRNA delivery not Toll-free. Nat Biotechnol 27:911–912PubMedCrossRefGoogle Scholar
  11. Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M (2009) Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLoS Biol 7:e1000222PubMedCrossRefGoogle Scholar
  12. Ghanim M, Kontsedalov S, Czosneck H (2007) Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Mol Biol 37:732–738PubMedCrossRefGoogle Scholar
  13. Gong LA, Yang XQ, Zhang BL, Zhong G, Hu M (2011) Silencing of Rieske iron-sulfur protein using chemically synthesised siRNA as a potential biopesticide against Plutella xylostella. Pest Manag Sci 67(5):514–520PubMedCrossRefGoogle Scholar
  14. Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232PubMedCrossRefGoogle Scholar
  15. Hail D, Hunter WB, Dowd SE, Bextine BR (2010) Expressed sequence tag (EST) survey of life stages of the potato psyllid, Bactericera cockerelli, using 454 pyrosequencing. Southwest Entomol 35(3):463–466CrossRefGoogle Scholar
  16. Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608PubMedCrossRefGoogle Scholar
  17. He Z-B, Cao Y-Q, Yin Y-P, Wang Z-K, Chen B, Peng G-X, Xia Y-X (2006) Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Dev Growth Differ 48:439–445PubMedCrossRefGoogle Scholar
  18. Hughes CL, Kaufman TC (2000) RNAi analysis of deformed, proboscipedia and sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127:3683–3694PubMedGoogle Scholar
  19. Hunter W, Ellis J, van Engelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J, Cox-Foster D, Paldi N (2010) Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 6:e1001160PubMedCrossRefGoogle Scholar
  20. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potentials of RNAi for pest control: a review. J Insect Physiol 56:227–235PubMedCrossRefGoogle Scholar
  21. International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313CrossRefGoogle Scholar
  22. Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:63PubMedCrossRefGoogle Scholar
  23. Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, Gorman K, Nelson DR, Bass C, ffrench-Constant RH, Williamson MS (2011) Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics 12:56. doi: 10.1186/1471-2164-12-56 PubMedCrossRefGoogle Scholar
  24. Kemp C, Imler J-L (2009) Antiviral immunity in Drosophila. Curr Opin Immunol 21:3–9PubMedCrossRefGoogle Scholar
  25. Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645–649PubMedCrossRefGoogle Scholar
  26. Khajuria C, Buschman LL, Chen M-S, Muthukrishnan S, Zhu KY (2010) A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621–629PubMedCrossRefGoogle Scholar
  27. Khila A, Grbić M (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 217:241–251PubMedCrossRefGoogle Scholar
  28. Kurscheid S, Lew-Tabor AE, Valle MR, Bruyeres AG, Doogan VJ, Munderloh UG, Guerrero FD, Barrero RA, Bellgard MI (2009) Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Mol Biol 10:26PubMedCrossRefGoogle Scholar
  29. Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters RL Jr, Brown JK (2006) Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genomics 7:79PubMedCrossRefGoogle Scholar
  30. Liu S, Ding Z, Zhang C, Yang B, Liu Z (2010) Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 40:666–671PubMedCrossRefGoogle Scholar
  31. Mao Y-B, Cai W-J, Wang J-W, Hong G-J, Tao X-Y, Wang L-J, Huang Y-P, Chen X-Y (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313PubMedCrossRefGoogle Scholar
  32. Mittapalli O, Bai XD, Mamidala P, Rajarapu SP, Bonello P, Herms DA (2010) Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis). PLoS One 5(10):e13708. doi: 10.1371/journal.pone.0013708 PubMedCrossRefGoogle Scholar
  33. Moar WJ, Clark T, Segers G, Ramaseshadri P, Hibbard B, Head G (2010) dsRNA: the next generation of pyramided insect protection traits. Abstract book 58th annual meeting of the Entomological Society of America, 12–15 Dec 2010, San Diego, CA, p 108Google Scholar
  34. Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420PubMedCrossRefGoogle Scholar
  35. Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6(38):1–7PubMedCrossRefGoogle Scholar
  36. Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen M-S, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci U S A 105:9965–9969PubMedCrossRefGoogle Scholar
  37. Obbard DJ, Jiggins FM, Halligan DL, Little TJ (2006) Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16:580–585PubMedCrossRefGoogle Scholar
  38. Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400PubMedCrossRefGoogle Scholar
  39. Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown SJ, Evans JD, Goldsmith MR, Lawson D, Okamuro J, Robertson HM, Schneider DJ (2011) Creating a buzz about insect genomes. Science 331:1386PubMedCrossRefGoogle Scholar
  40. Rocha JJE, Korolchuk VI, Robinson IM, O’Kane CJ (2011) A phagocytic route for uptake of double-stranded RNA in RNAi. PLoS One 6(4):e19087. doi: 10.1371/journal.pone.0019087 PubMedCrossRefGoogle Scholar
  41. Rodríguez-Cabrera L, Trujillo-Bacallao D, Borrás-Hidalgo O, Wright DJ, Ayra-Pardo C (2010) RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Environ Microbiol 12(11):2894–2903PubMedCrossRefGoogle Scholar
  42. Rogers DW, Baldini F, Battaglia F, Panico M, Dell A, Morris HR, Catteruccia F (2009) Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito. PLoS Biol 7:e1000272PubMedCrossRefGoogle Scholar
  43. Runo S, Alakonya A, Machuka J, Sinha N (2011) RNA interference as a resistance mechanism against crop parasites in Africa: a ‘Trojan horse’ approach. Pest Manag Sci 67(2):129–136PubMedCrossRefGoogle Scholar
  44. Sabin LR, Hanna SL, Cherry S (2010) Innate antiviral immunity in Drosophila. Curr Opin Immunol 22:4–9PubMedCrossRefGoogle Scholar
  45. Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802PubMedCrossRefGoogle Scholar
  46. Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–350PubMedCrossRefGoogle Scholar
  47. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587PubMedCrossRefGoogle Scholar
  48. Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39:1–10PubMedCrossRefGoogle Scholar
  49. Sims D, Bursteinas B, Jain E, Gao QO, Baum B, Zvelebil M (2010) The FLIGHT Drosophila RNAi database 2010 update. Fly 4(4):344–348PubMedCrossRefGoogle Scholar
  50. Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404PubMedCrossRefGoogle Scholar
  51. Swevers L, Liu J, Huvenne H, Smagghe G (2011) Search for limiting factors in the RNAi pathway in silkmoth tissues and the silkmoth-derived Bm5 cell line: the RNA-binding proteins R2D2 and Translin. PLoS One 6(5):e20250. doi: 10.1371/journal.pone.0020250 PubMedCrossRefGoogle Scholar
  52. Tan A, Palli SR (2008) Identification and characterization of nuclear receptors from the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38:430–439PubMedCrossRefGoogle Scholar
  53. Tang B, Wang S, Zhang F (2010) Two storage hexamerins from the beet armyworm Spodoptera exigua: cloning, characterization and the effect of gene silencing on survival. BMC Mol Biol 11:65PubMedCrossRefGoogle Scholar
  54. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Sriramana K, Albrechtsen M, An C, Aymeric J-L, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz J, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull J, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245PubMedCrossRefGoogle Scholar
  55. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a Lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4:e6225PubMedCrossRefGoogle Scholar
  56. Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130:299–308PubMedCrossRefGoogle Scholar
  57. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10PubMedCrossRefGoogle Scholar
  58. Torres L, Almazán C, Ayllón N, Galindo RC, Rosario-Cruz R, Quiroz-Romero H, de la Fuente J (2011) Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758). BMC Genomics 12:105. doi: 10.1186/1471-2164-12-105 PubMedCrossRefGoogle Scholar
  59. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391PubMedCrossRefGoogle Scholar
  60. Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C, Ramet M (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281:14370–14375PubMedCrossRefGoogle Scholar
  61. Vallier A, Vincent-Monégat C, Laurençon A, Heddi A (2009) RNAi in the cereal weevil Sitophilus spp Systemic gene knockdown in the bacteriome tissue. BMC Biotechnol 9:44PubMedCrossRefGoogle Scholar
  62. Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454PubMedCrossRefGoogle Scholar
  63. Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11:400. doi: 10.1186/1471-2164-11-400 PubMedCrossRefGoogle Scholar
  64. Wang Y, Zhang H, Li H, Miao X (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One 6(4):e18644. doi: 10.1371/journal.pone.0018644 PubMedCrossRefGoogle Scholar
  65. Wei Z, Yin Y, Zhang B, Wang Z, Peng G, Cao Y, Xia Y (2007) Cloning of a novel protease required for the molting of Locusta migratoria manilensis. Dev Growth Differ 49:611–621PubMedCrossRefGoogle Scholar
  66. Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832PubMedCrossRefGoogle Scholar
  67. Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459PubMedCrossRefGoogle Scholar
  68. Xie Q, Guo H-S (2006) Systemic antiviral silencing in plants. Virus Res 118:1–6PubMedCrossRefGoogle Scholar
  69. Xue J, Bao Y-Y, B-l L, Cheng Y-B, Peng Z-Y, Liu H, Xu H-J, Zhu Z-R, Lou Y-G, Cheng J-A, Zhang C-X (2010) Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One 5(12):e14233. doi: 10.1371/journal.pone.0014233 PubMedCrossRefGoogle Scholar
  70. Yang Y, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Huang F (2010) Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer, Diatraea saccharalis. Insect Biochem Mol Biol 40:592–603PubMedCrossRefGoogle Scholar
  71. Zhang F, Guo H, Zheng H, Zhou T, Zhou Y, Wang S, Fang R, Qian W, Chen X (2010a) Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC Genomics 11:303PubMedCrossRefGoogle Scholar
  72. Zhang J, Liu X, Zhang J, Li D, Sun Y, Guo Y, Ma E, Zhu KY (2010b) Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 40:824–833PubMedCrossRefGoogle Scholar
  73. Zhang J, Zhang J, Yang M, Jia Q, Guo Y, Ma E, Zhu KY (2011) Genomics-based approaches to screening carboxylesterase-like genes potentially involved in malathion resistance in oriental migratory locust (Locusta migratoria manilensis). Pest Manag Sci 67:183–190PubMedCrossRefGoogle Scholar
  74. Zhou X, Qi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci U S A 103:4499–4504PubMedCrossRefGoogle Scholar
  75. Zhou X, Wheeler MM, Qi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815PubMedCrossRefGoogle Scholar
  76. Zhu F, Parthasarathy R, Bai H, Woithe K, Kaussmann M, Nauen R, Harrison DA, Palli SR (2010) A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc Natl Acad Sci U S A 107(19):8557–8562PubMedCrossRefGoogle Scholar
  77. Zhu F, Xu J, Palli R, Ferguson J, Palli SR (2011) Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 67(2):175–182PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Insect Molecular Genetics and Biotechnology, Institute of BiologyNational Center for Scientific Research “Demokritos”AthensGreece
  2. 2.Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations