NeuroML

  • Padraig Gleeson
  • Volker Steuber
  • R. Angus Silver
  • Sharon Crook
Chapter

Abstract

NeuroML is a language based on XML for describing detailed neuronal models, which can contain multiple active conductances and complex morphologies. Networks of such cells positioned and synaptically connected in 3D can also be described. In this chapter we present an overview of the history of NeuroML, a brief description of the current version of the language, plans for future developments and the relationship to other standardisation initiatives in the wider computational neuroscience field. We also present a list of NeuroML resources which are currently available, such as language specifications, services on the NeuroML website, examples of models in this format, simulation platform support, and other applications for generating and visualising highly detailed neuronal networks. These resources illustrate how NeuroML can be a key part of the toolchain for researchers addressing complex questions of neuronal system function.

References

  1. Ascoli GA, Donohue DE, Halavi M (2007) Neuro{M}orpho.org: a central resource for neuronal morphologies. J Neurosci 27(35):9247–9251Google Scholar
  2. Bower J, Beeman D (1997) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation system. Springer, New YorkGoogle Scholar
  3. Bray T, Paoli J, Sperberg-McQueen CM (1998) Extensible Markup Language (XML) 1.0. Http://www.w3.org/TR/REC-xmlGoogle Scholar
  4. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris JFC, Zirpe M, Natschlager T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison AP, El Boustani S, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398PubMedCrossRefGoogle Scholar
  5. Cannon R, Gewaltig MO, Gleeson P, Bhalla U, Cornelis H, Hines M, Howell F, Muller E, Stiles J, Wils S, De Schutter E (2007) Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics 5(2):127–138PubMedCrossRefGoogle Scholar
  6. Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol 6(8):e1000886PubMedCrossRefGoogle Scholar
  7. Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Cornelis H, De Schutter E (2003) NeuroSpaces: separating modeling and simulation. Neurocomputing 52(4):227–231CrossRefGoogle Scholar
  9. Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007) MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics 5(2):96–104PubMedCrossRefGoogle Scholar
  10. Davison AP, Bruderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2008) PyNN: a common interface for neuronal network simulators. Front Neuroinf 2:11Google Scholar
  11. De Schutter E (2008) Why are computational neuroscience and systems biology so separate? PLoS Comput Biol 4(5):e1000078PubMedCrossRefGoogle Scholar
  12. Diesmann M, Gewaltig MO (2002) NEST: An Environment for Neural Systems Simulations, vol Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis 2001. Gottingen: Ges. fur Wiss. DatenverarbeitungGoogle Scholar
  13. Djurfeldt M, Lansner A (2007) Workshop report: 1st INCF workshop on large-scale modeling of the nervous system. Nature precedings http://dx.doi.org/10.1038/npre.2007.262.1
  14. Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  15. Gardner D (2004) Neurodatabase.org: networking the microelectrode. Nat Neurosci 7(5):486–487Google Scholar
  16. Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R, Gardner EP (2001) Common data model for neuroscience data and data model exchange. J Am Med Inform Assoc 8(1):17–33PubMedCrossRefGoogle Scholar
  17. Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54(2):219–235PubMedCrossRefGoogle Scholar
  18. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000815PubMedCrossRefGoogle Scholar
  19. Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D (2001) Towards NeuroML: model description methods for collaborative modelling in neuroscience. Philos Trans R Soc Lond B Biol Sci 356(1412):1209–1228PubMedCrossRefGoogle Scholar
  20. Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front Neuroinformatics 2:5Google Scholar
  21. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17(1):7–11PubMedCrossRefGoogle Scholar
  22. Howell F, Cannon R, Goddard N, Bringmann H, Rogister P, Cornelis H (2003) Linking computational neuroscience simulation tools–a pragmatic approach to component-based development. Neurocomputing 52–54:289–294CrossRefGoogle Scholar
  23. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin I, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531PubMedCrossRefGoogle Scholar
  24. Lloyd CM, Halstead MD, Nielsen PF (2004) CellML: its future, present and past. Prog Biophys Mol Biol 85(2–3):433–450PubMedCrossRefGoogle Scholar
  25. Qi W, Crook S (2004) Tools for neuroinformatic data exchange: an XML application for neuronal morphology data. Neurocomputing 58–60:1091–1095CrossRefGoogle Scholar
  26. Ray S, Bhalla US (2008) PyMOOSE: interoperable scripting in Python for MOOSE. Front Neuroinformatics (2)Google Scholar
  27. Rhodes PA, Llinas RR (2001) Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. J Physiol 536(1):167–187. DOI 10.1111/j.1469-7793.2001.00167.xPubMedCrossRefGoogle Scholar
  28. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926PubMedCrossRefGoogle Scholar
  29. Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FE, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93(4):2194–2232PubMedCrossRefGoogle Scholar
  30. Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94:719–723PubMedCrossRefGoogle Scholar
  31. Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci 20:RC50Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Padraig Gleeson
    • 1
  • Volker Steuber
    • 2
  • R. Angus Silver
    • 1
  • Sharon Crook
    • 3
  1. 1.Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
  2. 2.School of Computer Science, Science and Technology Research InstituteUniversity of HertfordshireHatfieldUK
  3. 3.School of Mathematical and Statistical Sciences, School of Life Sciences, and Center for Adaptive Neural SystemsArizona State UniversityTempeUSA

Personalised recommendations