The Biotechnology of Cyanobacteria



This chapter gives an overview of the range of cyanobacterial materials being harvested from nature and grown in culture, increasingly on a large scale. Arthrospira, which is usually marketed as Spirulina, is the most important, but studies are also underway on developing methods to grow Nostoc commercially; at present colonies of several species are harvested for local use in a number of countries in Asia, Africa and South America Although Aphanizomenon flos-aquae has been harvested and sold, the costs of the quality control needed to avoid long-term risks of material including toxins makes its large-scale culture unrealistic. The various approaches to mass culture are considered and the ways in which cyanobacteria are now being used are described. These include food, phycobiliproteins for pigment and antioxidant, animal feed, cosmetics, biofertilizers and treatment of wastewater and exhaust gas. Promising products for the near future include some of the huge range of bioactive molecules produced by cyanobacteria and most important of all, biofuel.


  1. Abalde J, Betancourt L, Torres E, Cid A, Barwell C (1998) Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci 136(1):109–120CrossRefGoogle Scholar
  2. Abdulqader GL, Barsanti L, Tredici MR (2000) Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. J Appl Phycol 12(3):493–498CrossRefGoogle Scholar
  3. Akao Y, Ebihara T, Masuda H, Saeki Y, Akazawa T, Hazeki K, Hazeki O, Matsumoto M, Seya T (2009) Enhancement of antitumor natural killer cell activation by orally administered Spirulina extract in mice. Cancer Sci 100(8):1494–1501PubMedCrossRefGoogle Scholar
  4. Angermayr SA, Hellingwerf KJ, Lindblad P, Teixeira de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20(3):257–263PubMedCrossRefGoogle Scholar
  5. Anwer R, Khursheed S, Fatma T (2011) Detection of immunoactive insulin in Spirulina. J Appl Phycol. doi:10.1007/s10811-011-9757-1:1-9Google Scholar
  6. Balunas MJ, Linington RG, Tidgewell K, Fenner AM, Urena LD, Togna GD, Kyle DE, Gerwick WH (2009) Dragonamide E, a modified linear lipopeptide from Lyngbya majuscula with antileishmanial activity. J Nat Prod 73(1):60–66Google Scholar
  7. Becher PG, Beuchat J, Gademann K, Jüttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68(12):1793–1795PubMedCrossRefGoogle Scholar
  8. Belay A (1997) Mass culture of Spirulina outdoors: the Earthrise Farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 131–142, 233 ppGoogle Scholar
  9. Belay A (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutr Assoc 5(2):27–48Google Scholar
  10. Belay A (2007) Production and quality assurance. Spirulina in human nutrition and health. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp 1–26, 312 ppCrossRefGoogle Scholar
  11. Belay A, Kato T, Ota Y (1996) Spirulina (Arthrospira): potential application as an animal feed supplement. J Appl Phycol 8(4):303–311CrossRefGoogle Scholar
  12. Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75(19):2353–2362PubMedCrossRefGoogle Scholar
  13. Benedetti S, Rinalducci S, Benvenuti F, Francogli S, Pagliarani S, Giorgi L, Micheloni M, D’Amici GM, Zolla L, Canestrari F (2006) Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. J Chromatogr B 833(1):12–18CrossRefGoogle Scholar
  14. Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4(3):233–245CrossRefGoogle Scholar
  15. Bermejo Román R, Alvarez-Pez J, Acién Fernández F, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93(1):73–85PubMedCrossRefGoogle Scholar
  16. Bhaskar SU, Gopalaswamy G, Raghu R (2005) A simple method for efficient extraction and purification of C-phycocyanin from Spirulina platensis Geitler. Indian J Exp Biol 43(3):277PubMedGoogle Scholar
  17. Blinkova L, Gorobets O, Baturo A (2001) Biological activity of Spirulina platensis. Zh Mikrobiol Epidemiol Immunobiol 2:114–118PubMedGoogle Scholar
  18. Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA (1991) Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron 47(37):7739–7750CrossRefGoogle Scholar
  19. Borkenstein CG, Knoblechner J, Frühwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23(1):131–135CrossRefGoogle Scholar
  20. Böttcher H, Franke H, Kallies KH, Kiessig Pompe W, Sandau E, Soltmann U (2006) Heavy metal decontamination by hybrid biofilters. WO00/2006/081932, 10.08.2006 (Patent application)Google Scholar
  21. Boussiba S, Richmond AE (1979) Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch Microbiol 120(2):155–159CrossRefGoogle Scholar
  22. Boussiba S, Richmond AE (1980) C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125(1):143–147CrossRefGoogle Scholar
  23. Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41(7):1521PubMedGoogle Scholar
  24. But PP-H, Cheng L, Chan PK, Lau DT-W, But JW-H (2002) Nostoc flagelliforme and faked items retailed in Hong Kong. J Appl Phycol 14:143–145CrossRefGoogle Scholar
  25. Cai YA, Murphy JT, Wedemayer GJ, Glazer AN (2001) Recombinant phycobiliproteins 1: recombinant C-phycocyanins equipped with affinity Tags, oligomerization, and biospecific recognition domains. Anal Biochem 290(2):186–204PubMedCrossRefGoogle Scholar
  26. Cain KD, Grabowski L, Reilly J, Lytwyn M (2003) Immunomodulatory effects of a bacterial derived 1, 3 glucan administered to tilapia (Oreochromis nilotocus L.) in a Spirulina based diet. Aquac Res 34(13):1241–1244CrossRefGoogle Scholar
  27. Capelli B, Cysewski GR (2010) Potential health benefits of Spirulina microalgae. Nutr Food 9(2):19–26Google Scholar
  28. Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81(3):305–315PubMedCrossRefGoogle Scholar
  29. Carmichael WW, Drapeau C, Anderson DM (2000) Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. J Appl Phycol 12(6):585–595CrossRefGoogle Scholar
  30. Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol 20(3):221–224CrossRefGoogle Scholar
  31. Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18(5):603–608CrossRefGoogle Scholar
  32. Chen X, Smith GD, Waring P (2003) Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J Appl Phycol 15(4):269–277Google Scholar
  33. Chen XF, Jia SR, Yue SJ, Wang N, Li CT, Wang Y (2009) Effect of solid bed-materials on vegetative cells of Nostoc flagelliforme. J Appl Phycol 22(3):341–347CrossRefGoogle Scholar
  34. Chen XF, Jia SR, Yue SJ, Wang Y, Wang N (2011) Biological crust of Nostoc flagelliforme (cyanobacteria) on sand bed materials. J Appl Phycol 23:67–71CrossRefGoogle Scholar
  35. Cheng Z, Cai H (1988) A preliminary study on the early-stage development of three species of Nostoc. J Northwest Norm Univ 3:41–52Google Scholar
  36. Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34(5):461–465CrossRefGoogle Scholar
  37. Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59(1):75–84PubMedCrossRefGoogle Scholar
  38. Chuntapa B, Powtongsook S, Menasveta P (2003) Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture 220(1–4):355–366CrossRefGoogle Scholar
  39. Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Mol Biol Rev 47(4):551–578Google Scholar
  40. Contreras-Martel C, Matamala A, Bruna C, Poo-Caamano G, Almonacid D, Figueroa M, Martinez-Oyanedel J, Bunster M (2007) The structure at 2 Å resolution of phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC complex. Biophys Chem 125(2–3):388–396PubMedCrossRefGoogle Scholar
  41. Converti A, Oliveira R, Torres B, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two-step biological process. Bioresour Technol 100(23):5771–5776PubMedCrossRefGoogle Scholar
  42. Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce -N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102(14):5074–5078PubMedCrossRefGoogle Scholar
  43. Critchley A, Ohno M (1998) Seaweeds resources of the world. Japan International Cooperation Agency, YokosukaGoogle Scholar
  44. Cui Z (1983) Culture trial of facai in soil-soaked solution. Sci Technol Lett Inner Mongol 4:10–38Google Scholar
  45. Cysewski GR (2010) Commercial Production of Spirulina. 2nd Algae World, Brussels, Belgium, 31th May–1st JuneGoogle Scholar
  46. Danxiang H, Yonghong B, Zhengyu H (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Nostoc. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 304–311, 566 ppGoogle Scholar
  47. Davies-Coleman MT, Dzeha TM, Gray CA, Hess S, Pannell LK, Hendricks DT, Arendse CE (2003) Isolation ofomodolastatin 16, new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J Nat Prod 66(5):712–715PubMedCrossRefGoogle Scholar
  48. De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22(3):151–175CrossRefGoogle Scholar
  49. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13(4):293–299CrossRefGoogle Scholar
  50. De Philippis R, Paperi R, Sili C, Vincenzini M (2003) Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15(2):155–161CrossRefGoogle Scholar
  51. Delpeuch F, Joseph A, Cavelier C (1975) Consumption as food and nutritional composition of blue-green algae among populations in the Kanem region of Chad. Ann Nutr Aliment 29:497–516PubMedGoogle Scholar
  52. Deng R, Chow TJ (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 28(4):e33–e45PubMedCrossRefGoogle Scholar
  53. Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528PubMedGoogle Scholar
  54. DeRuyter YS, Fromme P (2008) Molecular structure of the photosynthetic apparatus. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 217–270, 484 ppGoogle Scholar
  55. Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2(8):857–864CrossRefGoogle Scholar
  56. Diao Z (1996) Study of natural conditions and ecological physiology characteristics for growth of Nostoc flagelliforme in Qinhai province. Chin J Ecol 15:8–13Google Scholar
  57. Dias E, Pereira P, Franca S (2002) Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (Cyanobacteria). J Phycol 38(4):705–712CrossRefGoogle Scholar
  58. Dobler M, Dover S, Laves K, Binder A, Zuber H (1972) Crystallization and preliminary crystal data of C-phycocyanin. J Mol Biol 71(3):785–787PubMedCrossRefGoogle Scholar
  59. Doke JM Jr (2005) An improved and efficient method for the extraction of phycocyanin from Spirulina sp. Int J Food Eng 1(5):1Google Scholar
  60. Dubey A, Rai A (1995) Application of algal biofertilizers (Aulosira fertilissima Tenuis and Anabaena doliolum Bhardawaja) for sustained paddy cultivation in northern India. Isr J Plant Sci 43(1):41–52Google Scholar
  61. Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algal biomass, production and use. North Holland Biomedical Press, Amsterdam, pp 51–64, 852 ppGoogle Scholar
  62. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11(6):817–833PubMedCrossRefGoogle Scholar
  63. Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179(6):1940–1945PubMedGoogle Scholar
  64. El-Sayed AFM (1994) Evaluation of soybean meal, Spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 127(2–3):169–176CrossRefGoogle Scholar
  65. El-Sheekh MM, El-Shouny WA, Osman MEH, El-Gammal EWE (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ Toxicol Pharmacol 19(2):357–365PubMedCrossRefGoogle Scholar
  66. Eriksen NT (2008) Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80(1):1–14PubMedCrossRefGoogle Scholar
  67. Falch BS, Koenig GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM, Bachmann H (1995) Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Med 61:321–328PubMedCrossRefGoogle Scholar
  68. Falke P, Hendreich R, Knorr G, Güttes B, Sandau P (1999) Verfahren zur Herstellung von Polyurethan-Schaumstoffen für die Adsorption von Schwermetallionen. DE000019958702Google Scholar
  69. Ferey F, Walenta G, Grewe C (2010) Microalgae culture on a Lafarge cement plant. 8th workshop on microalgal biotechnology, June 7–10, Nuthetal, GermanyGoogle Scholar
  70. Fox RD (2001) The spiral of Spirulina. In: Trevidi PC (ed) Algal biotechnology. Pointer Publishers, Jaipur, 398 ppGoogle Scholar
  71. Fujishiro T, Ogawa T, Matsuoka M, Nagahama K, Takeshima Y, Hagiwara H (2004) Establishment of a pure culture of the hitherto uncultured unicellular cyanobacterium Aphanothece sacrum, and phylogenetic position of the organism. Appl Environ Microbiol 70(6):3338–3345PubMedCrossRefGoogle Scholar
  72. Gademann K, Portmann C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12(4):326–341CrossRefGoogle Scholar
  73. Gao K (1998) Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 10(1):37–49CrossRefGoogle Scholar
  74. Gao K, Ye C (2003) Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae) under aquatic conditions. J Phycol 39(3):617–623CrossRefGoogle Scholar
  75. Ge B, Tang Z, Zhao F, Ren Y, Yang Y, Qin S (2005) Scale-up of fermentation and purification of recombinant allophycocyanin over-expressed in Escherichia coli. Process Biochem 40(10):3190–3195CrossRefGoogle Scholar
  76. Gershwin ME, Belay A (2007) Spirulina in human nutrition and health. CRC Press, Boca Raton, 328 ppGoogle Scholar
  77. Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of Curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59(6):1243–1245CrossRefGoogle Scholar
  78. Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58(1):125–130PubMedCrossRefGoogle Scholar
  79. Görs M, Schumann R, Hepperle D, Karsten U (2010) Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol 22(3):265–276CrossRefGoogle Scholar
  80. Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77(1):69–75PubMedCrossRefGoogle Scholar
  81. Grawish ME (2008) Effects of Spirulina platensis extract on Syrian hamster cheek pouch mucosa painted with 7, 12-dimethylbenz [a] anthracene. Oral Oncol 44(10):956–962PubMedCrossRefGoogle Scholar
  82. Grawish ME, Zaher AR, Gaafar AI, Nasif WA (2010) Long-term effect of Spirulina platensis extract on DMBA-induced hamster buccal pouch carcinogenesis (immunohistochemical study). Med Oncol 27(1):20–28PubMedCrossRefGoogle Scholar
  83. Grewe JC (2005) Cyanopeptoline und Scytocyclamide: zyklische Peptide aus Scytonema hofmanni PCC7110; Struktur und biologische Aktivität. Fakultät für Biologie. Ph D thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, FreiburgGoogle Scholar
  84. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507CrossRefGoogle Scholar
  85. Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15(2):209–215CrossRefGoogle Scholar
  86. Grobbelaar JU (2009a) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21(5):523–527CrossRefGoogle Scholar
  87. Grobbelaar JU (2009b) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21(5):489–492CrossRefGoogle Scholar
  88. Guan X, Qin S, Su Z, Zhao F, Ge B, Li F, Tang X (2007) Combinational biosynthesis of a fluorescent cyanobacterial holo-α-phycocyanin in Escherichia coli by using one expression vector. Appl Biochem Biotechnol 142(1):52–59PubMedCrossRefGoogle Scholar
  89. Gunasekera SP, Ross C, Paul VJ, Matthew S, Luesch H (2008) Dragonamides C and D, linear lipopeptides from the marine cyanobacterium brown Lyngbya polychroa. J Nat Prod 71(5):887–890PubMedCrossRefGoogle Scholar
  90. Gupta V, Natarajan C, Chaudhary V, Kumar A, Sharma E, Sharma J, Bhatnagar, AK, Prasanna R (2012) Analyses of diversity among fungicidal Anabaena strains. J Appl Phycol. doi:10.1007/s10811-012-9793-5:1-11
  91. Gupta V, Rastogi A (2008) Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154(1–3):347–354PubMedCrossRefGoogle Scholar
  92. Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GML, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 81(16):1254PubMedCrossRefGoogle Scholar
  93. Haase SM, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24(2):157–162Google Scholar
  94. Hagmann L, Jüttner F (1996) Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37(36):6539–6542CrossRefGoogle Scholar
  95. Harrigan GG, Yoshida WY, Moore RE, Nagle DG, Park PU, Biggs J, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998a) Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J Nat Prod 61(10):1221–1225Google Scholar
  96. Harrigan GG, Yoshida WY, Moore RE, Nagle DG, Park PU, Biggs J, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998b) Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J Nat Prod 61(10):1221–1225PubMedCrossRefGoogle Scholar
  97. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19–20):894–901PubMedCrossRefGoogle Scholar
  98. Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59(1):83–87PubMedCrossRefGoogle Scholar
  99. Helblin EW, Gao K, Ai H, Ma Z, Villafañe VE (2006) Differential responses of Nostoc sphaeroides and Arthrospira platensis to solar ultraviolet radiation exposure. J Appl Phycol 18(1):57–66CrossRefGoogle Scholar
  100. Hemscheidt T, Puglisi MP, Larsen LK, Patterson GML, Moore RE, Rios JL, Clardy J (1994) Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. J Org Chem 59(12):3467–3471CrossRefGoogle Scholar
  101. Henrikson R (1989) Earth food Spirulina. Ronore Enterprises, Inc, Laguna Beach, 174 ppGoogle Scholar
  102. Hernandez-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res 56(3):279–285PubMedCrossRefGoogle Scholar
  103. Herrera A, Boussiba S, Napoleone V, Hohlberg A (1989) Recovery of c-phycocyanin from the cyanobacterium Spirulina maxima. J Appl Phycol 1(4):325–331CrossRefGoogle Scholar
  104. Hill DR, Keenan TW, Helm RF, Potts M, Crowe LM, Crowe JH (1997) Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J Appl Phycol 9(3):237–248CrossRefGoogle Scholar
  105. Hirata K, Yoshitomi S, Dwi S, Iwabe O, Mahakhant A, Polchai J, Miyamoto K (2003) Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95(5):512–517PubMedGoogle Scholar
  106. Hu Q (2004) Industrial production of microalgal cell mass and secondary products major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 264–272, 566 ppGoogle Scholar
  107. Hussain A, Hasnain S (2011) Phytostimulation and biofertilization in wheat by cyanobacteria. J Ind Microbiol Biotechnol 38(1):85–92PubMedCrossRefGoogle Scholar
  108. Jensen GS, Ginsberg DI, Drapeau C (2001) Blue-green algae as an immuno-enhancer and biomodulator. J Am Nutr Assoc 3:24–30Google Scholar
  109. Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217(1–4):179–190CrossRefGoogle Scholar
  110. John DM, Whitton BA, Brook AJ (eds) (2002) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, UK, 904 ppGoogle Scholar
  111. Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J Ethnopharmacol 118(1):159–165PubMedCrossRefGoogle Scholar
  112. Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13(2):216–223PubMedCrossRefGoogle Scholar
  113. Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T (2005) Isolation of an antiviral polysaccharide, Nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68(7):1037–1041PubMedCrossRefGoogle Scholar
  114. Kanekiyo K, Hayashi K, Takenaka H, Lee JB, Hayashi T (2007) Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol Pharm Bull 30(8):1573–1575PubMedCrossRefGoogle Scholar
  115. Kaya K, Mahakhant A, Keovara L, Sano T, Kubo T, Takagi H (2002) Spiroidesin, a novel lipopeptide from the cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium Microcystis aeruginosa. J Nat Prod 65(6):920–921PubMedCrossRefGoogle Scholar
  116. Khaing MK (2004) A study on the edible cyanobacteria (blue green algae) Nostoc species in Upper Myanmar. Ph D thesis, Department of Botany, Mandalay University, MyanmarGoogle Scholar
  117. Khan Z, Bhadouria P, Bisen P (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6(5):373–379PubMedCrossRefGoogle Scholar
  118. Kim JD (2006) Screening of cyanobacteria (blue-green algae) from rice paddy soil for anti-fungal activity against plant pathogenic fungi. Korean J Mycol 34(3):138–142Google Scholar
  119. Kiran B, Kaushik A (2008) Cyanobacterial biosorption of Cr (VI): application of two parameter and Bohart Adams models for batch and column studies. Chem Eng J 144(3):391–399CrossRefGoogle Scholar
  120. Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35(21):4283–4288PubMedCrossRefGoogle Scholar
  121. Kobayashi A, Kajiyama S, Inawaka K, Kanzaki H, Kawazu K (1994) Nostodione A, a novel mitotic spindle poison from a blue green alga Nostoc commune. Z Naturforsch 49(7–8):464–470Google Scholar
  122. Larsen LK, Moore RE, Patterson GML (1994) β-Carbolines from the blue-green alga Dichothrix baueriana. J Nat Prod 57(3):419–421PubMedCrossRefGoogle Scholar
  123. Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Cambridge, UK, 560 ppCrossRefGoogle Scholar
  124. Lee JB, Srisomporn P, Hayashi K, Tanaka T, Sankawa U, Hayashi T (2001) Effects of structural modification of calcium spirulan, a sulfated polysaccharide from Spirulina platensis, on antiviral activity. Chem Pharm Bull 49(1):108–110PubMedCrossRefGoogle Scholar
  125. Liaaen-Jensen S, Egeland ES (1999) Microalgal carotenoids. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis Ltd., London, pp 145–172, 417 ppGoogle Scholar
  126. Liao X, Zhang B, Wang X, Yan H, Zhang X (2011) Purification of C-phycocyanin from Spirulina platensis by single-step ion-exchange chromatography. Chromatographia 73:291–296CrossRefGoogle Scholar
  127. Liu XJ, Chen F (2003) Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures. Folia Microbiol 48(5):619–626CrossRefGoogle Scholar
  128. Liu Y, Liu K, Ai Y, Jiang H, Gao X, Qiu B (2012) Differential display analysis of cDNA fragments potentially involved in Nostoc flagelliformeresponse to osmotic stress. J Appl Phycol. doi:10.1007/s10811-012-9806-4:1-8
  129. Løbner M, Walsted A, Larsen R, Bendtzen K, Nielsen CH (2008) Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis. J Med Food 11(2):313–322PubMedCrossRefGoogle Scholar
  130. Lodi A, Binaghi L, De Faveri D, Carvalho JCM, Converti A, Del Borghi M (2005) Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) with carbon source pulse feeding. Ann Microbiol 55(3):181Google Scholar
  131. Lopes Pinto FA, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27(11–12):1209–1215CrossRefGoogle Scholar
  132. Lu J, Takeuchi T (2004) Spawning and egg quality of the tilapia Oreochromis niloticus fed solely on raw Spirulina throughout three generations. Aquaculture 234(1–4):625–640CrossRefGoogle Scholar
  133. Lu YM, Xiang WZ, Wen YH (2010) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23(2):265–269Google Scholar
  134. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64(7):907–910PubMedCrossRefGoogle Scholar
  135. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390PubMedCrossRefGoogle Scholar
  136. Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88(10):3389–3401Google Scholar
  137. Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76(5):408–410CrossRefGoogle Scholar
  138. Marquez FJ, Nishio N, Nagai NS, Sasaki K (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J Chem Technol Biotechnol 62(2):159–164CrossRefGoogle Scholar
  139. Mazokopakis EE, Karefilakis CM, Tsartsalis AN, Milkas AN, Ganotakis ES (2008) Acute rhabdomyolysis caused by Spirulina (Arthrospira platensis). Phytomedicine 15(6–7):525–527PubMedCrossRefGoogle Scholar
  140. McPhail KL, Correa J, Linington RG, González J, Ortega-Barría E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70(6):984–988PubMedCrossRefGoogle Scholar
  141. Mehta S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152PubMedCrossRefGoogle Scholar
  142. Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibanez E, Señoráns F (2007) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102(4):1357–1367CrossRefGoogle Scholar
  143. Mendiola JA, García-Martínez D, Rupérez FJ, Martín-Álvarez PJ, Reglero G, Cifuentes A, Barbas C, Ibañez E, Señoráns FJ (2008) Enrichment of vitamin E from Spirulina platensis microalga by SFE. J Supercrit Fluid 43(3):484–489CrossRefGoogle Scholar
  144. Miki W, Yamaguchi K, Konosu S (1986) Carotenoid composition of Spirulina maxima. Bull Jpn Soc Sci Fish 52(7):1225–1227CrossRefGoogle Scholar
  145. Min HEP, Zhang Yin Jiang H, Hui W (1999) Effect of the Spirulina feed on the growth and body color of Crucian carp. J Fish Chin 2:162–168Google Scholar
  146. Minkova K, Tchernov A, Tchorbadjieva M, Fournadjieva S, Antova R, Busheva MC (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J Biotechnol 102(1):55–59PubMedCrossRefGoogle Scholar
  147. Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calciumspirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16(6):541–550PubMedCrossRefGoogle Scholar
  148. Miranda J, Krishnakumar G, Gonsalves R (2012) Cr6+ bioremediation efficiency ofOscillatoria laete-virens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer: kinetics and equilibrium study. J Appl Phycol. doi:10.1007/s10811-012-9800-x:1-16
  149. Moreno J, Vargas MA, Rodriguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20(4–6):191–197PubMedCrossRefGoogle Scholar
  150. Mühling M, Harris N, Belay A, Whitton BA (2003) Reversal of helix orientation in the cyanobacterium Arthrospira. J Phycol 39(2):360–367CrossRefGoogle Scholar
  151. Mühling M, Belay A, Whitton BA (2005a) Screening Arthrospira (Spirulina) strains for heterotrophy. J Appl Phycol 17(2):129–135CrossRefGoogle Scholar
  152. Mühling M, Belay A, Whitton BA (2005b) Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol 17(2):137–146CrossRefGoogle Scholar
  153. Muller Feuga A (2004) Microalgae for aquaculture: the current global situation future trends. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 352–364, 566 ppGoogle Scholar
  154. Muller Feuga A, Robert R, Cahu C, Robin J, Divanach P (2003) Uses of microalgae in aquaculture. In: Stottrup J, McEvoy L (eds) Live feeds in marine aquaculture. Blackwell Publishing Co, Oxford, pp 253–299, 336 ppCrossRefGoogle Scholar
  155. Nagase H, Inthorn D, Oda A, Nishimura J, Kajiwara Y, Park M, Hirata K, Miyamoto K (2005) Improvement of selective removal of heavy metals in cyanobacteria by NaOH treatment. J Biosci Bioeng 99(4):372–377PubMedCrossRefGoogle Scholar
  156. Narayan M, Manoj G, Vatchravelu K, Bhagyalakshmi N, Mahadevaswamy M (2005) Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. Int J Food Sci Nutr 56(7):521–528PubMedCrossRefGoogle Scholar
  157. Niu JF, Wang GC, Lin X, Zhou BC (2007) Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. J Chromatogr B 850(1–2):267–276CrossRefGoogle Scholar
  158. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4–6):459–466PubMedCrossRefGoogle Scholar
  159. Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15(2):249–257CrossRefGoogle Scholar
  160. Oliveira E, Rosa G, Moraes M, Pinto L (2008) Phycocyanin content of Spirulina platensis dried in spouted bed and thin layer. J Food Process Eng 31(1):34–50CrossRefGoogle Scholar
  161. Oliveira EG, Duarte JH, Moraes K, Crexi VT, Pinto LAA (2010) Optimisation of Spirulina platensis convective drying: evaluation of phycocyanin loss and lipid oxidation. Int J Food Sci Tech 45(8):1572–1578Google Scholar
  162. Olvera Novoa M, Domínguez Cen L, Olivera Castillo L, Martínez Palacios CA (1998) Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac Res 29(10):709–715CrossRefGoogle Scholar
  163. Padgett MP, Krogmann DW (1987) Large scale preparation of pure phycobiliproteins. Photosynth Res 11(3):225–235CrossRefGoogle Scholar
  164. Padyana AK, Bhat VB, Madyastha K, Rajashankar K, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282(4):893–898PubMedCrossRefGoogle Scholar
  165. Parages ML, Rico RM, Abdala-Díaz RT, Chabrillón M, Sotiroudis TG, Jiménez C (2012) Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages. J Appl Phycol. doi:10.1007/s10811-012-9814-4:1-10
  166. Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60Google Scholar
  167. Patil G, Raghavarao K (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem Eng J 34(2):156–164CrossRefGoogle Scholar
  168. Patil G, Chethana S, Sridevi A, Raghavarao K (2006) Method to obtain C-phycocyanin of high purity. J Chromatogr A 1127(1–2):76–81PubMedGoogle Scholar
  169. Patil G, Chethana S, Madhusudhan M, Raghavarao K (2008) Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresour Technol 99(15):7393–7396PubMedCrossRefGoogle Scholar
  170. Patnaik S, Sarkar R, Mitra A (2001) Alginate immobilization of Spirulina platensis for wastewater treatment. Indian J Exp Biol 39(8):824–826PubMedGoogle Scholar
  171. Patterson GML, Carmeli S (1992) Biological effects of tolytoxin (6-hydroxy-7-O-methyl-scytophycin b), a potent bioactive metabolite from cyanobacteria. Arch Microbiol 157(5):406–410PubMedCrossRefGoogle Scholar
  172. Patterson GML, Smith CD, Kimura LH, Britton BA, Carmeli S (1993) Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil Cytoskel 24(1):39–48CrossRefGoogle Scholar
  173. Pedroni P, Davison J, Beckert H, Bergman P, Benemann J (2001) A proposal to establish an international network on biofixation of CO2 and greenhouse gas abatement with microalgae. J Energy Environ Res 1(1):136–150Google Scholar
  174. Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2009) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21(1):135–144CrossRefGoogle Scholar
  175. Posten C (2009) Design principles of photo bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177CrossRefGoogle Scholar
  176. Preußel K, Stüken A, Wiedner C, Chorus I, Fastner J (2006) First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47(2):156–162PubMedCrossRefGoogle Scholar
  177. Prinsep MR, Caplan FR, Moore RE, Patterson GML, Smith CD (1992) Tolyporphin, a novel multidrug resistance reversing agent from the blue-green alga Tolypothrix nodosa. J Am Chem Soc 114(1):385–387CrossRefGoogle Scholar
  178. Pugh N, Ross SA, ElSohly HN, ElSohly MA, Pasco DS (2001) Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med 67(8):737–742PubMedCrossRefGoogle Scholar
  179. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648PubMedCrossRefGoogle Scholar
  180. Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Bioprocess and algae reactor technology, apoptosis, vol 59. Springer, Berlin, pp 123–152, 259 ppCrossRefGoogle Scholar
  181. Pulz O, Storandt R, Boback A (2008) Mikroalgen in der Broileraufzucht. DGS 9:15–18Google Scholar
  182. Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9(2):113–119CrossRefGoogle Scholar
  183. Qiu B, Gao K (2002) Daily production and photosynthetic characteristics of Nostoc flagelliforme grown under ambient and elevated CO2 conditions. J Appl Phycol 14(2):77–83CrossRefGoogle Scholar
  184. Qiu B, Liu J, Liu Z, Liu S (2002) Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng County in China. J Appl Phycol 14(5):423–429CrossRefGoogle Scholar
  185. Quesada A, Leganés F, Fernández-Valiente E (1997) Environmental factors controlling N2 fixation in Mediterranean rice fields. Microb Ecol 34(1):39–48PubMedCrossRefGoogle Scholar
  186. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34(2):77–88PubMedCrossRefGoogle Scholar
  187. Ramos A, Acien FG, Fernandez-Sevilla JM, Gonzalez CV, Bermejo R (2011) Development of a process for large-scale purification of C-phycocyanin from Synechocystis aquatilis using expanded bed adsorption chromatography. J Chromatogr B 879(7–8):511–519CrossRefGoogle Scholar
  188. Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains—a laboratory study. J Appl Phycol 5(6):581–591CrossRefGoogle Scholar
  189. Rasool M, Sabina EP (2009) Appraisal of immunomodulatory potential of Spirulina fusiformis: an in vivo and in vitro study. J Nat Med 63(2):169–175PubMedCrossRefGoogle Scholar
  190. Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539PubMedCrossRefGoogle Scholar
  191. Regunathan C, Wesley S (2006) Pigment deficiency correction in shrimp broodstock using Spirulina as a carotenoid source. Aquac Nutr 12(6):425–432CrossRefGoogle Scholar
  192. Richmond A, Vonshak A (1978) Spirulina culture in Israel. Arch Hydrobiol Beih Ergebn Limnol 11:274–280Google Scholar
  193. Rickards R, Rothschild WJM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55(47):13513–13520Google Scholar
  194. Rito Palomares M, Nuñez L, Amador D (2001) Practical application of aqueous two phase systems for the development of a prototype process for c phycocyanin recovery from Spirulina maxima. J Chem Technol Biotechnol 76(12):1273–1280CrossRefGoogle Scholar
  195. Rodríguez A, Stella A, Storni M, Zulpa G, Zaccaro M (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2(1):7PubMedCrossRefGoogle Scholar
  196. Rohrlack T, Christoffersen K, Hansen PE, Zhang W, Czarnecki O, Henning M, Fastner J, Erhard M, Neilan BA, Kaebernick M (2003) Isolation, characterization, and quantitative analysis of microviridin J, a new Microcystis metabolite toxic to Daphnia. J Chem Ecol 29(8):1757–1770PubMedCrossRefGoogle Scholar
  197. Roney BR, Renhui L, Banack SA, Murch S, Honegger R, Cox PA (2009) Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China? Amyotroph Lateral Scler 10(S2):44–49PubMedCrossRefGoogle Scholar
  198. Rosello Sastre R, Posten C (2010) Die vielfältige Anwendung von Mikroalgen als nachwachsende Rohstoffe. The variety of microalgae applications as a renewable resource. Chem Ing Tech 82(11):1925–1939CrossRefGoogle Scholar
  199. Ross E, Puapong D, Cepeda F, Patterson P (1994) Comparison of freeze-dried and extruded Spirulina platensis as yolk pigmenting agents. Poult Sci 73(8):1282–1289PubMedCrossRefGoogle Scholar
  200. Sajilata M, Singhal R, Kamat M (2008a) Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulina platensis. Food Chem 109(3):580–586CrossRefGoogle Scholar
  201. Sajilata M, Singhal RS, Kamat MY (2008b) Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J Food Eng 84(2):321–326CrossRefGoogle Scholar
  202. Saker ML, Jungblut AD, Neilan BA, Rawn DFK, Vasconcelos VM (2005) Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 46(5):555–562PubMedCrossRefGoogle Scholar
  203. Sandau P (2010) Examples for successfully marketed active ingredients of algae in cosmetic products. Institue for Cereal Processing, NuthetalGoogle Scholar
  204. Sandau P, Pulz O (2009) Untersuchungen zu bioaktiven Wirkungen des Algenpolysaacharids Calcium-Spirulan aus Arthrospira platensis. OM & Ernährung 131:F40–F45Google Scholar
  205. Santiago-Santos M (2004) Extraction and purification of phycocyanin from Calothrix sp. Process Biochem 39(12):2047–2052CrossRefGoogle Scholar
  206. Sarada R, Pillai MG, Ravishankar G (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34(8):795–801CrossRefGoogle Scholar
  207. Schaeffer DJ, Malpas PB, Barton LL (1999) Risk assessment of microcystin in dietary Aphanizomenon flos-aquae. Ecotoxicol Environ Saf 44(1):73–80PubMedCrossRefGoogle Scholar
  208. Scherzinger D, Al Babili S (2008) In vitro characterization of a carotenoid cleavage dioxygenase from Nostoc sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlight. Mol Microbiol 69(1):231–244PubMedCrossRefGoogle Scholar
  209. Schlotmann K, Waldmann-laue M, Jassoy C, Kaeten M, Koehler E, Pulz O, Kurth E (2005) Extract of blue-green alga Spirulina and the use thereof in cosmetic skin-care and body care agents, EP Patent 1,239,813Google Scholar
  210. Schreckenbach K, Thürmer C, Loest K, Träger G, Hahlweg R (2001) Der Einfluss von Mikroalgen (Spirulina platensis) in Trockenmischfutter auf Karpfen (Cyprinus carpio). Fischer Teichwirt 1:10–13Google Scholar
  211. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20(2):113–136CrossRefGoogle Scholar
  212. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215(2):229–238PubMedCrossRefGoogle Scholar
  213. Sharma NK, Tiwari SP, Tripathi K, Rai AK (2010) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23(6):1059–1081Google Scholar
  214. Shelef G, Soeder C (1980) Algal biomass, production and use. North Holland Biomedical Press, AmsterdamGoogle Scholar
  215. Shi D, Zhou G, Fang S, Qiu Y, Zhong Z, Cui Z (1992) Studies on photosynthesis, respiration and morphology of Nostoc flagelliforme. Acta Bot Sin 34:507–514Google Scholar
  216. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416PubMedCrossRefGoogle Scholar
  217. Simon NS, Lynch D, Gallaher TN (2009) Phosphorus fractionation in sediment cores collected In 2005 before and after opnset of an Aphanizomenon flos-aquae bloom in Upper Klamath Lake, OR, USA. Water Air Soil Pollut 204(1):139–153CrossRefGoogle Scholar
  218. Singh NK, Parmar A, Madamwar D (2009) Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol 100(4):1663–1669PubMedCrossRefGoogle Scholar
  219. Sinha RP, Klisch M, Walter Helbling E, Häder DP (2001) Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. J Photochem Photobiol B Biol 60(2–3):129–135CrossRefGoogle Scholar
  220. Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria. Molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 159–197, 484 ppGoogle Scholar
  221. Soeder C (1992) Mass cultures of microalgae – achievements and perspectives. 1st European workshop on microalgal biotechnology, Potsdam Rehbrücke, GermanyGoogle Scholar
  222. Soeder C, Muller H, Payer H, Schulle H (1971) Mineral nutrition of planktonic algae: some considerations, some experiments. Int Ver Theor Angew Limnol 19:39–58Google Scholar
  223. Soni B, Kalavadia B, Trivedi U, Madamwar D (2006) Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata isolated from the rocky shores of Bet-Dwarka, Gujarat, India. Process Biochem 41(9):2017–2023CrossRefGoogle Scholar
  224. Soni B, Trivedi U, Madamwar D (2008) A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Technol 99(1):188–194PubMedCrossRefGoogle Scholar
  225. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial Applications of Microalgae. J Biosci Bioeng 101(2):87–96PubMedCrossRefGoogle Scholar
  226. Stec B, Troxler RF, Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76(6):2912–2921PubMedCrossRefGoogle Scholar
  227. Stirk W, Ördög V, Van Staden J, Jäger K (2002) Cytokinin-and auxin-like activity in Cyanophyta and microalgae. J Appl Phycol 14(3):215–221CrossRefGoogle Scholar
  228. Storandt R, Franke H, Pulz O, Loest K, Ecke M, Steinberg KH (2000) Algae in animal nutrition. Tierernährung – Ressourcen und neue Aufgaben, Hannover, Germany, Landbauforschung VölkenrodeGoogle Scholar
  229. Su J, Jia S, Qiao C, Jung G (2005) Culture of Nostoc flagelliforme on solid medium. Korean J Environ Biol 23:135–140Google Scholar
  230. Su J, Jia S, Chen X, Yu H (2008) Morphology, cell growth, and polysaccharide production of Nostoc flagelliforme in liquid suspension culture at different agitation rates. J Appl Phycol 20(3):213–217CrossRefGoogle Scholar
  231. Takenaka H, Yamaguchi Y, Sakaki S, Watarai K, Tanaka N, Hori M, Seki H, Tsuchida M, Yamada A, Nishimori T (1998) Safety evaluation of Nostoc flagelliforme (Nostocales, Cyanophyceae) as a potential food. Food Chem Toxicol 36(12):1073–1077PubMedCrossRefGoogle Scholar
  232. Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68(7):954–979PubMedCrossRefGoogle Scholar
  233. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130(6):1806–1807PubMedCrossRefGoogle Scholar
  234. Tarakhovskay E, Maslov YI, Shishova M (2007) Phytohormones in algae. Russ J Plant Physiol 54(2):163–170CrossRefGoogle Scholar
  235. Teas J, Hebert JR, Fitton JH, Zimba PV (2004) Algae – a poor man’s HAART? Med Hypotheses 62(4):507–510PubMedCrossRefGoogle Scholar
  236. Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci India 89(1):47–57Google Scholar
  237. Thein M (2011) The use of natural resource for sustainable production of Spirulina in Myanmar crater lakes. 5th International Algae Congress, Dec 1–2, BerlinGoogle Scholar
  238. Tiburcio P, Galvez FCF, Cruz L, Gavino V (2007) Optimization of low-cost drying methods to minimize lipid peroxidation in Spirulina platensis grown in the Philippines. J Appl Phycol 19(6):719–726CrossRefGoogle Scholar
  239. Tomaselli L (1997) Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell biology, and biotechnology. Taylor & Francis, London/San Francisco, pp 1–19, 233 ppGoogle Scholar
  240. Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo- subunit in a heterologous host. Proc Natl Acad Sci USA 98(19):10560–10565PubMedCrossRefGoogle Scholar
  241. Toyomizu M, Sato K, Taroda H, Kato T, Akiba Y (2001) Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Br Poult Sci 42(2):197–202PubMedCrossRefGoogle Scholar
  242. Travieso L, Sanchez E, Benitez F, Conde J (1993) Arthospira sp. intensive cultures for food and biogas purification. Biotechnol Lett 15:1091–1094CrossRefGoogle Scholar
  243. Trimurtulu G, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116(11):4729–4737CrossRefGoogle Scholar
  244. Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028PubMedCrossRefGoogle Scholar
  245. Vaishampayan A, Sinha R, Hader DP, Dey T, Gupta A, Bhan U, Rao A (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67(4):453–516CrossRefGoogle Scholar
  246. Volk RB (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 17(4):339–347CrossRefGoogle Scholar
  247. Vonshak A (1997a) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London/Bristol, 233 ppGoogle Scholar
  248. Vonshak A (1997b) Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London/Bristol, pp 43–65, 233 ppGoogle Scholar
  249. Vonshak A, Tomaselli L (2000) Arthrospira (Spirulina): systematics and ecophysiology. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publihsers, Dordrecht, pp 505–522, 669 ppGoogle Scholar
  250. Wang ZP, Zhao Y (2005) Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): from linear to helical. J Phycol 41(3):622–628CrossRefGoogle Scholar
  251. Watanabe I (1982) AzollaAnabaena symbiosis – its physiology and use in tropical agriculture. In: Dommergues YE (ed) Microbiology of tropical soils and plant productivity. Kluwer Academic Publishers, Dordrecht, p 169CrossRefGoogle Scholar
  252. Watanuki H, Ota K, Tassakka ACMAR, Kato T, Sakai M (2006) Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture 258(1–4):157–163CrossRefGoogle Scholar
  253. Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, 669 ppGoogle Scholar
  254. Wilson AC, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul JM, Kerfeld CA, Van Grondelle R, Robert B, Kennis J (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Nat Acad Sci 105(33):12075Google Scholar
  255. Wood SA, Rasmussen JP, Holland PT, Campbell R, Crowe ALM (2007) First report of the cyanotoxin anatoxin A from Aphanizomenon issatschenkoi (Cyanobacteria). J Phycol 43(2):356–365CrossRefGoogle Scholar
  256. Yamamoto Y, Nakahara H (2005) The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length. Limnology 6(1):1–6CrossRefGoogle Scholar
  257. Yan SG, Zhu LP, Su HN, Zhang XY, Chen XL, Zhou BC, Zhang YZ (2011) Single-step chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis. J Appl Phycol 23(1):1–6CrossRefGoogle Scholar
  258. Yoshimura H, Kotake T, Aohara T, Tsumuraya Y, Ikeuchi M, Ohmori M (2012) The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance. J Appl Phycol 24:237–243Google Scholar
  259. Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133CrossRefGoogle Scholar
  260. Zarrouk C (1966) Contribution à l étude d une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Paris, University de Paris, Ph.D.Google Scholar
  261. Zemke-White W, Ohno M (1999) World seaweed utilisation: an end-of-century summary. J Appl Phycol 11(4):369–376CrossRefGoogle Scholar
  262. Zhang YM, Chen F (1999) A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Tech 13(9):601–603CrossRefGoogle Scholar
  263. Zhang H, Hu C, Jia X, Xu Y, Wu C, Chen L, Wang F (2012) Characteristics of γ-hexachlorocyclohexane biodegradation by a nitrogen-fixing cyanobacterium, Anabaena azotica. J Appl Phycol 24(2):221–225CrossRefGoogle Scholar
  264. Zhang YM, Chen F (1999) A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Tech 13(9):601–603Google Scholar
  265. Zhong Z, Shi D, Wang F, Cui Z (1992) Effects of temperature, water content and light intensity on nitrogenase activity of Nostoc flagelliforme. Acta Bot Sin 34:219–225Google Scholar
  266. Zitelli GC, Tomasello V, Pinzani E, Tredici MR (1996) Outdoor culture of Arthrospira platensis during autumn and winter in temperate climate. J Appl Phycol 8:293–301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Research and DevelopmentSalata GmbHRitschenhausenGermany

Personalised recommendations