Advertisement

Rivulariaceae

  • Brian A. Whitton
  • Pilar Mateo
Chapter

Summary

The Rivulariaceae are treated here as all the cyanobacteria which have trichomes with a marked taper and a basal heterocyst for much of their growth cycle. Molecular sequencing of Calothrix and Rivularia shows that these are heterogeneous and this probably also applies to Dichothrix and Gloeotrichia. The unispecific Isactis has received little study, but is morphologically close to some Calothrix. These should all be treated as form-genera for ecological descriptive purposes until more sequencing studies have been made. Sacconema and Gardnerula are not considered distinct enough to be treated as distinct genera. Colony formation occurs by aggregation of hormogonia and this may lead to the inclusion of more than one genotype.

The group as a whole occurs in environments with highly variable P concentrations, usually short periods of relatively high ambient P followed by much longer periods of low P; a few possible exceptions are discussed. Typically organic P exceeds inorganic P and the Rivulariaceae as a whole are especially efficient at using organic phosphates. N2 fixation in Rivulariaceae is highest during the period of high P. In the case of Gloeotrichia echinulata, which sometimes forms blooms in lakes, P acquisition takes place mainly while the organism is growing near the sediments. Its competitive success is favoured by a combination of P-rich sediments and relatively low P concentrations in the water.

Long colourless multicellular hairs are formed by many species, including all those with distinct hemispherical and spherical colonies. The hairs not only enhance the surface area for phosphatase activities, but also aid P acquisition from environments where the ambient P concentration is mostly low, but with occasional much higher pulses. Although most phosphatase activities take place at the cell surface, some activity often occurs in sheaths and probably also inside the cytoplasmic membrane of older hair cells, suggesting that organic phosphates can sometimes pass through the membrane.

Sufficient is known about the relationship between morphology and the environment in the Rivulariaceae to make them excellent environmental indicators. Many of the morphological characters used for classical taxonomic descriptions are expressed only when the organisms are P-limited, but some culture collections and many experimental studies have used media with very high P concentrations, making past interpretation of results doubtful, if not wrong.

Keywords

Hair Cell Deepwater Rice Multicellular Hair Akinete Formation PMEase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Prof. Yuwadee Peerapornpisal and her students at the Department of Biology, Chiangmai University, Thailand, for helping B.A.W. to visit the Queen Sirikit Botanic Garden with its conspicuous floating cyanobacterial colonies. We much appreciate helpful comments on a draft of this chapter by Dr Allan Pentecost.

References

  1. Abe T, Ikeda T, Yanada R, Ishikura M (2011) Concise total synthesis of calothrixins A and B. Org Lett 13(13):3356–3359PubMedCrossRefGoogle Scholar
  2. Aboal M, Puig MA (2009) Microcystin production in Rivularia colonies of calcareous streams from Mediterranean Spanish basins. Algol Stud 130:39–52CrossRefGoogle Scholar
  3. Aboal M, Puig MA, Rios H, López-Jiménez E (2000) Relationship between macroinvertebrate diversity and toxicity of cyanophyceae (Cyanobacteria) in some streams from eastern Spain. Verh Int Verein Limnol 27:555–559Google Scholar
  4. Aboal M, Puig MA, Mateo P, Perona E (2002) Implications of cyanophyte toxicity on biological monitoring of calcareous streams in north-east Spain. J Appl Phycol 14:49–56CrossRefGoogle Scholar
  5. Aboal M, Puig MA, Asencio AD (2005) Production of microcystins in calcareous Mediterranean streams: the Alharabe River, Segura River basin in south-east Spain. J Appl Phycol 17:231–243CrossRefGoogle Scholar
  6. Adamec F, Kaftan D, Nedbal L (2005) Stress-induced filament fragmentation of Calothrix elenkinii (Cyanobacteria) is facilitated by death of high-fluorescence cells. J Phycol 41:835–839CrossRefGoogle Scholar
  7. Adams DG (2000) Symbiotic interactions. In: Whitton B, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 523–561, 668 ppGoogle Scholar
  8. Ahmadjian V (1967) A guide to the algae occurring in lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6:127–160CrossRefGoogle Scholar
  9. Al-Mousawi AHA (1984) Biological studies on algae in ricefield soil from the Iraqi marshes. Ph.D. thesis, University of Durham, DurhamGoogle Scholar
  10. Al-Mousawi AHA, Whitton BA (1983) Influence of environmental factors on algae in rice-field soil from the Iraqi marshes. Arab J Gulf Res 1:237–253Google Scholar
  11. Aziz A (1985) Blue-green algal nitrogen fixation associated with deepwater rice in Bangladesh. Ph D thesis, University of Durham, DurhamGoogle Scholar
  12. Aziz A, Whitton BA (1988) Influence of light flux on nitrogenase activity of the deepwater rice-field cyanobacterium (blue-green alga) Gloeotrichia pisum in field and laboratory. Microbios 53:7–19Google Scholar
  13. Aziz A, Whitton BA (1989) Morphogenesis of blue-green algae. II. Hair differentiation in Gloeotrichia pisum. Bangladesh J Bot 16:69–81Google Scholar
  14. Banerjee M, John J (2005) Phosphatase activity of non-hair forming cyanobacterium Rivularia and its role in phosphorus dynamics in deepwater rice-fields. Appl Ecol Environ Res 3(1):55–60Google Scholar
  15. Barbiero RP (1993) A contribution to the life history of the planktonic cyanophyte, Gloeotrichia echinulata. Arch Hydrobiol 127:87–100Google Scholar
  16. Barbiero RP, Welch EB (1992) Contribution of benthic blue-green algal recruitment to lake populations and phosphorus recruitment. Freshw Biol 27:249–260CrossRefGoogle Scholar
  17. Bary D (1863) Beitrag zur Kenntnis der Nostocaceen, insbesondere Rivulariaceen. Flora (Jena) 46:553–560Google Scholar
  18. Batten DL, Van Geel B (1985) Celyphus rallus, probably early Cretaceous rivulariacean blue-green alga. Rev Palaeobot Palynol 44:233–241CrossRefGoogle Scholar
  19. Bauersachs T, Compaoré J, Hopmans EC, Stal LJ, Schouten S, Damsté JSS (2009) Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70:2034–2039PubMedCrossRefGoogle Scholar
  20. Benedetti-Cecchi L, Vaselli S, Maggi E, Bertocci I (2005) Interactive effects of spatial variance and mean intensity of grazing on algal cover in rock pools. Ecology 86:2212–2222CrossRefGoogle Scholar
  21. Beraldi-Campesi H, Cevallos-Ferriz SRS, Chacón-Baca E (2004) Microfossil algae associated with Cretaceous stromatolites in the Tarahumara Formation, Sonora, Mexico. Cretac Res 25:249–265CrossRefGoogle Scholar
  22. Bernardo PH, Chai CLL, Heath GA, Mahon PJ, Smith GD, Waring P, Wilkes BA (2004) Synthesis, electrochemistry, and bioactivity of the cyanobacterial calothrixins and related quinones. J Med Chem 47:4958–4963PubMedCrossRefGoogle Scholar
  23. Bernardo PH, Chai CLL, Le Guen M, Smith GD, Waring P (2007) Structure-activity delineation of quinones related to the biologically active calothrixin B. Bioorg Med Chem Lett 17(1):82–85PubMedCrossRefGoogle Scholar
  24. Berrendero E, Perona E, Mateo P (2008) Genetic and morpholo­gical characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 58:447–460PubMedCrossRefGoogle Scholar
  25. Berrendero E, Perona E, Mateo P (2011) Phenotypic variability and phylogenetic relationships of Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 61(12):3039–3051PubMedCrossRefGoogle Scholar
  26. Böcher TW (1946) Dichothrix gelatinosa sp. n., its structure and resting organs. K Danske Vidensk Selsk Skr IV(4):1–15Google Scholar
  27. Bornet JBE, Flahault CGM (1886) Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France. Ann Sci Nat Bot Sér 7(3):323–381Google Scholar
  28. Campbell D, Houmard J, Tandeau de Marsac N (1993) Electron transport regulates cellular differentiation in the filamentous cyano­bacterium Calothrix. Plant Cell 5(4):451–463PubMedGoogle Scholar
  29. Campos IFP, Senna PAC (1988) Nostocophyceae (Cyanophyceae) de Lagao Bonita, Distrito Federal, Brasil. Parto 1. Acta Bot Bras 2(1–2):7–30CrossRefGoogle Scholar
  30. Capone DG, Taylor BF (1977) Nitrogen fixation (acetylene reduction) in the phyllosphere of Thalassia testidinum. Mar Biol 40(1):19–28CrossRefGoogle Scholar
  31. Carey CC, Rengefors K (2010) The cyanobacterium Gloeotrichia echinulata stimulates the growth of other phytoplankton. J Plankton Res 32:1349–1354CrossRefGoogle Scholar
  32. Carey CC, Haney JF, Cottingham KL (2007) First report of microcystin-LR in the cyanobacterium Gloeotrichia echinulata. Environ Toxicol 22:337–339PubMedCrossRefGoogle Scholar
  33. Carey CC, Weathers KC, Cottingham KL (2008) Gloeotrichia echinulata blooms in an oligotrophic lake helpful insights from eutrophic lakes. J Plankton Res 30:893–904CrossRefGoogle Scholar
  34. Carey CC, Weathers KC, Cottingham KL (2009) Increases in phosphorus at the sediment-water interface may influence the initiation of cyanobacterial blooms in an oligotrophic lake. Verh Int Verein Limnol 30(8):1185–1188Google Scholar
  35. Carey CC, Cottingham KL, Weathers KC, Brentrup JA, Ruppertsberger NM, Ewing HA, Hairston NG (2011) Cyanobacteria are not all bad: Gloeotrichia echinulata may stimulate plankton food webs in nutrient-limited freshwater ecosystems. In: Abstract, 96th Ecological Society of America annual meeting, Austin, TX, 7–12 Aug 2011Google Scholar
  36. Carpenter EJ, Cox JL (1974) Production of pelagic Sargassum and a blue-green epiphyte in the western Sargasso Sea. Limnol Oceanogr 19:429–436CrossRefGoogle Scholar
  37. Casanova J (1982) Morphologie et biolithogenèse des barrages de travertins. In: Nicod J (ed) Formations Carbonatées -Externes, Tufs et Travertins. Institut de géographie, Aix-en-Provence, pp 45–54Google Scholar
  38. Casanova J (1984) Genèse des carbonates d’un travertin pléistocène: interpretation paleoecologique du sondage Peyr I (Comprégnac, Aveyron). Geobios 17:219–229Google Scholar
  39. Castenholz RW (1973) Ecology of the blue-green algae in hot springs. In: Carr NG, Whitton BA (eds) The biology of the blue-green algae. Blackwell, Oxford, pp 379–414, 655 ppGoogle Scholar
  40. Castenholz RW (1989) Rivulariaceae. In: Bergey’s manual of systematic bacteriology 3. Williams & Wilkins, Baltimore, pp 1790–1793Google Scholar
  41. Cattaneo A (1983) Grazing on epiphytes. Limnol Oceanogr 28:124–132CrossRefGoogle Scholar
  42. Caudwell C, Lang J, Pascal A (1997) Étude expérimentale de la lamination stromatolithes à Rivularia haematites mat en climat tempéré: édification des lamines microcritiques. C R Acad Sci Paris 324(IIa):883–890Google Scholar
  43. Caudwell C, Lang J, Pascal A (2001) Lamination of swampy-rivulets Rivularia haematites stromatolites in a temperate climate. Sediment Geol 143:125–147 (+ 148: 451)CrossRefGoogle Scholar
  44. Chang TP (1979a) Growth and acetylene reduction by Gloeotrichia echinulata (Smith) Richter in axenic culture. Br Phycol J 14:207–210CrossRefGoogle Scholar
  45. Chang TP (1979b) Zur Morphologie von Gloeotrichia echinulata (Smith) Richter in axenischer Kultur. Nova Hedwigia Kryptogamenk 21:265–283Google Scholar
  46. Chang T-P (1983) Interaction of water-blooming cyanophyte Gloeotri­chia echinulata and its endophytic blue-green alga Pseudanabaena catenata. Arch Hydrobiol 97:320–328Google Scholar
  47. Chang T-P, Blauw TS (1980) Nitrogen fixing capacity of two colonial types of Gloeotrichia echinulata and its endophytic blue-green alga Pseudanabaena catenata. Arch Hydrobiol 89:382–386Google Scholar
  48. Chen X, Smith GD, Waring P (2003) Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J Appl Phycol 15:269–277CrossRefGoogle Scholar
  49. Claassen MI (1973) Freshwater algae of Southern Africa. I. Notes on Gloeotrichia ghosei R.N.Singh. Br Phycol J 8:325–331CrossRefGoogle Scholar
  50. Cuzman OA, Stefano Ventura S, Sili C, Mascalchi C, Tulio Turchetti T, D’Acqui LP, Tiano P (2010) Biodiversity of phototrophic biofilms dwelling on monumental fountains. Microb Ecol 60:81–95PubMedCrossRefGoogle Scholar
  51. Darley J (1967) Sur quelques résultats de la culture en laboratoire de deux espèces de Calothrix Agardh (Myxophycées-Rivulariacées). C R Acad Sci Ser 264D:1013–1015Google Scholar
  52. de Toni G (1936) Noterelle di Nomencl. Algological 8:5Google Scholar
  53. Desikachary TV (1946) Germination of the heterocyst in two members of the Rivulariaceae, Gloeotrichia raciboskii Wolosz. and Rivularia mangini Frémy. J Indian Bot Soc 25:11–17Google Scholar
  54. Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi, 686 ppGoogle Scholar
  55. Dillon JG, Castenholz RW (2003) The synthesis of the UV-screening pigment, scytonemin, and photosynthetic performance in isolates from closely related natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5(6):484–491PubMedCrossRefGoogle Scholar
  56. Dillon JG, Miller SR, Castenholz RW (2003) UV-acclimation responses in natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5:473–483PubMedCrossRefGoogle Scholar
  57. Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J Appl Phycol 12:409–416CrossRefGoogle Scholar
  58. Doan NT, Stewart PR, Smith GD (2001) Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-epi-hapalindole E isonitrile and calothrixin A. FEMS Microbiol Lett 196:135–139PubMedCrossRefGoogle Scholar
  59. Domínguez-Escobar J, Beltrán Y, Bergman B, Díez B, Ininbergs K, Souza V, Falcón LI (2011) Phylogenetic and molecular clock inferences of cyanobacterial strains within Rivulariaceae from distant environments. FEMS Microbiol Lett 316:90–99Google Scholar
  60. Donaldson A, Whitton BA (1977) Algal flora of freshwater habitats on Aldabra. Atoll Res Bull 215:1–26CrossRefGoogle Scholar
  61. Douglas D, Peat A, Whitton BA, Wood P (1986) Influence of iron status on structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47:155–165Google Scholar
  62. Dragastan G, Golubic S, Richter DK (1996) Rivularia haematites: a case study of the recent versus fossil morphological. Taxonomical considerations. Rev Española Micropaleontol 28:43–73Google Scholar
  63. Dromgoole FI, Silvester WB, Hicks BJ (1978) Nitrogenase associated with Codium species from New Zealand. N Z J Mar Freshw Res 12:17–22CrossRefGoogle Scholar
  64. Duong TP, Tiedje JM (1985) Nitrogen fixation by naturally occurring duckweed-cyanobacterial associations. Can J Microbiol 31:327–330CrossRefGoogle Scholar
  65. Edmondson WT (1938) Three new species of Rotatoria. Trans Am Microsc Soc 57:153–157CrossRefGoogle Scholar
  66. Ehrenreich IM, Waterbury JB, Webb EA (2005) Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 71(11):7401–7413PubMedCrossRefGoogle Scholar
  67. Eiler A, Olsson JA, Bertilsson S (2006) Diurnal variations in the auto- and heterotrophic activity of cyanobacterial phycospheres (Gloeotrichia echinulata) and the identify of attached bacteria. Freshw Biol 51:298–311CrossRefGoogle Scholar
  68. Falcón LI, Magall Falcón S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783PubMedCrossRefGoogle Scholar
  69. Fan KC (1956) Revision of Calothrix Ag. Rev Algol N.S. 2(3):154–178Google Scholar
  70. Fey SB, Mayer ZA, Davis SC, Cottingham KL (2010) Zooplankton grazing of Gloeotrichia echinulata and associated life history consequences. J Plankton Res 9:1337–1347CrossRefGoogle Scholar
  71. Fogg GE (1969) The physiology of an algal nuisance. Proc R Soc Lond B 173:175–189CrossRefGoogle Scholar
  72. Forsell L, Pettersson K (1995) On the seasonal migration of the cyano­bacterium Gloeotrichia echinulata in Lake Erken, Sweden, and is influence on the pelagic population. Mar Freshw Res 46:287–293Google Scholar
  73. Foster RA, Zehr JP (2006) Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ Microbiol 8:1913–1925PubMedCrossRefGoogle Scholar
  74. Foster RA, Capone DG, Carpenter EJ, Mahaffey C, Subramaniam A, Zehr JP (2007) Influence of the Amazon River Plume on distributions of free-living and symbiotic cyanobacteria in the Western Tropical North Atlantic Ocean. Limnol Oceanogr 52:517–532CrossRefGoogle Scholar
  75. Foster RA, Subramaniam A, Zehr JP (2009) Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic. Environ Microbiol 11:741–750PubMedCrossRefGoogle Scholar
  76. Foster RA, Goebel NL, Zehr JP (2010) Isolation of Calothrix rhizosoleniae (cyanobacteria) strain sc01 from Chaetoceros (Bacillariophyta) spp. diatoms of the subtropical North Pacific Ocean. J Phycol 46:128–1037CrossRefGoogle Scholar
  77. Foster RA, Kuypers MMM, Vagner T, Paerl RW, Muzat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484–1493. doi: 10.1038/ismej.2011.26 PubMedCrossRefGoogle Scholar
  78. Friedmann I (1956) Über der Blaualga Gardnerula corymbosa (Harvey) J. De Toni und ihr Vorkommen im Mittelmeer. Öst Bot Z 103:336–341CrossRefGoogle Scholar
  79. Fritsch FE (1907a) The subaerial and freshwater algal flora of the Tropics. Ann Bot 21:235–275Google Scholar
  80. Fritsch FE (1907b) A general consideration of the freshwater algae and subaerial algae of Ceylon. Proc R Soc Lond B 79:197–254CrossRefGoogle Scholar
  81. Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Kryptogamen-flora, vol 14. Akademische Verlagsgesellschaft, Leipzig, 1196 ppGoogle Scholar
  82. Golden SS (1995) Light-responsive gene expression in cyanobacteria. J Bacteriol 177:1651–1654PubMedGoogle Scholar
  83. Golubic S, Campbell SE (1981) Biogenically formed aragonite concretions in marine Rivularia. In: Monty C (ed) Phanerozoic stromatolites. Springer, Berlin/Heidelberg, pp 209–229CrossRefGoogle Scholar
  84. Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek, near Lancaster, Pennsylvania. Verh Int Verein Limnol 19:2315–2323Google Scholar
  85. Gomont M(A) (1895) Note sur un Calothrix sporifère (Calothrix stagnalis sp. n.). J Bot 9:1–6Google Scholar
  86. Gonsalves EA, Kamat ND (1960) New species of Cyanophyceae from Mysore State – 1. J Bombay Nat Hist Soc 57(2):454–456Google Scholar
  87. Grainger SLJ, Peat A, Tiwari DN, Whitton BA (1989) Phosphomonoes­terase activity of the cyanobacterium (blue-green alga) Calothrix parietina. Microbios 59:7–17PubMedGoogle Scholar
  88. Gunasekera SP, Miller MW, Kwan JC, Luesch H, Paul VJ (2010) Molassamide, a depsipeptide serine protease inhibitor from the marine cyanobacterium Dichothrix utahensis. J Nat Prod 73:459–462PubMedCrossRefGoogle Scholar
  89. Healey FP (1982) Phosphate. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publishers, Oxford, pp 105–124, 688 ppGoogle Scholar
  90. Henssen A (1969) Three non-marine species of the genus Lichina. Lichenologist 4:88–98CrossRefGoogle Scholar
  91. Henssen A (1973) New or interesting cyanophytic lichens. I. Lichenologist 5:444–451CrossRefGoogle Scholar
  92. Heuff H, Horkan K (1984) Caragh. In: Whitton BA (ed) Ecology of European rivers. Blackwell, Oxford, pp 363–384, 644 ppGoogle Scholar
  93. Hicks BJ, Silvester WB (1985) Nitrogen fixation associated with the New Zealand mangrove (Avicennia marina (Forsk.) Vierh. var. resinifera (Forst. f.) Bakh.). Appl Environ Microbiol 49:955–959PubMedGoogle Scholar
  94. Höckelmann C, Becher PG, von Reuss SH, Jüttner F (2009) Sesquiter­penes of the geosmin-producing cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates. Z Naturforsh 64C:49–55Google Scholar
  95. Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB (2005) Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles 9:325–332PubMedCrossRefGoogle Scholar
  96. Hoover RB (2011) Fossils of cyanobacteria in CI1 carbonaceous meteorites. J Cosmol 13:1–39Google Scholar
  97. Huang TC, Grobbelaar N (1989) Isolation and characterization of endosymbiotic Calothrix. (Cyanophyceae) in Encephalartos hildebrandtii (Cycadales). Phycologia 28:464–468CrossRefGoogle Scholar
  98. Hübel H, Hübel M (1974) In-situ Messungen der diurnalen Stickstoff Fixierung an Mikrobenthos der OstseeKüste. Arch Hydrobiol Suppl 46:39–54Google Scholar
  99. Hyenstrand P, Rydin E, Gunnerhed M, Linder J, Blomqvist P (2001) Response of the cyanobacterium Gloeotrichia echinulata to iron and boron additions – an experiment from Lake Erken. Freshw Biol 46:735–741CrossRefGoogle Scholar
  100. Islam MR, Whitton BA (1992a) Phosphorus content and phosphatase activity of the deepwater rice-field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69:7–16Google Scholar
  101. Islam MR, Whitton BA (1992b) Cell composition and nitrogen fixation by the deepwater rice -field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69:77–88Google Scholar
  102. Istvánovics V (2008) The role of biota in shaping the phosphorus cycle in lakes. Freshw Rev 1:143–174Google Scholar
  103. Istvánovics V, Pettersson K, Pierson D (1990) Partitioning of phosphate uptake between different size groups of planktonic microorganisms in Lake Erken. Verh Int Verein Limnol 24:231–245Google Scholar
  104. Istvánovics V, Pettersson K, Rodrigo MA, Pierson D, Padisák J, Colom W (1993) Gloeotrichia echinulata, a colonial cyanobacterium with a unique phosphorus uptake and life strategy. J Plankton Res 15:531–552CrossRefGoogle Scholar
  105. Janson S, Rai AN, Bergman B (1993) The marine lichen Lichina confinis (O. F. Müll.) C. Ag.: ultrastructure and localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose 1, 5-bisphosphate carboxylase/oxygenase in the cyanobiont. New Phytol 124:149–160CrossRefGoogle Scholar
  106. Johansson C (1979) Chlorophyll content and the periphytic algal vegetation in six streams in North Jämtland, Sweden, 1977. Medd Växtbiol Inst Uppsala 1979(2):1–28Google Scholar
  107. Jones K, Stewart WDP (1969) Nitrogen turnover in marine and brackish habitats III. The production of extracellular nitrogen by Calothrix scopulorum. J Mar Biol Assoc UK 49:475–488CrossRefGoogle Scholar
  108. Kann E (1982) Qualitative Veränderungen der litoralen Algenbiocönose österreichischer Seen. Arch Hydrobiol Suppl 62:440–490Google Scholar
  109. Karlsson I (2003) Benthic growth of Gloeotrichia echinulata cyanobacteria. Hydrobiologia 506:189–193CrossRefGoogle Scholar
  110. Karlsson-Elfgren I, Rydin E, Hyenstrand P, Pettersson K (2003) Recruitment and pelagic growth of Gloeotrichia echinulata in Lake Erken. J Phycol 39:1050–1056CrossRefGoogle Scholar
  111. Karlsson-Elfgren I, Rengefors K, Gustafson S (2004) Factors regulating recruitment from the sediment to the water column in the bloom-forming cyanobacterium Gloeotrichia echinulata. Freshw Biol 49:265–273CrossRefGoogle Scholar
  112. Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51CrossRefGoogle Scholar
  113. Katayama M, Kobayashi M, Ikeuchi M (2007) Phototropism observed in cyanobacterium Rivularia sp. Plant Cell Physiol 48:158Google Scholar
  114. Kenyon CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol 83:216–236PubMedCrossRefGoogle Scholar
  115. Khan QA, Lu J, Hecht SM (2009) Calothrixins, a new class of human DNA topoisomerase I poisons. J Nat Prod 72(3):438–442PubMedCrossRefGoogle Scholar
  116. Khoja TM, Whitton BA (1971) Heterotrophic growth of blue-green algae. Arch Mikrobiol 79:280–282CrossRefGoogle Scholar
  117. Khoja TM, Livingstone D, Whitton BA (1984) Ecology of a marine Rivularia population. Hydrobiologia 108:65–73Google Scholar
  118. Kirkby SM, Whitton BA (1976) Uses of coded data in study of Calothrix and Rivularia. Br Phycol J 11:407–416CrossRefGoogle Scholar
  119. Lachance M-A (1981) Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int J Syst Bacteriol 31:13–147CrossRefGoogle Scholar
  120. Lami R, Meslin R (1959) Sur une cyanophycée, Calothrix Chapmanii nom. nov., vivant à l’intérieur d’une Entéromorphe limicole. Bull Lab Marit Dinard 44:47–49Google Scholar
  121. Lange W (1974) Chelating agents and blue-green algae. Can J Microbiol 20(10):1311–1320CrossRefGoogle Scholar
  122. Larsen LK, Re M, Patterson GML (1994) β-carbolines from the blue-green alga Dichothrix baueriana. J Nat Products 57(3):419–421CrossRefGoogle Scholar
  123. Lebedeva NV, Boichenko VA, Semenova LR, Pronina NA, Stadnichuk IN (2005) Effects of glucose during photoheterotrophic growth of the cyanobacterium Calothrix sp PCC 7601 capable for chromatic adaptation. Russ J Plant Physiol 52:235–241CrossRefGoogle Scholar
  124. Lemmermann E (1905) Die Algenflora der Sandwich-Islen. Ergebnisse einer Reise nach dem Pacific. H. Schauinsland 1896/97. Bot Jahrbuch Systematik Pflanzengesch Pflanzengeogr 3:607–663Google Scholar
  125. Limaye RB, Kumaran KPN, Nair KM, Padmalal D (2010) Cyanobacteria as potential biomarkers of hydrological changes in the Late Quaternary sediments of South Kerala Sedimentary Basin, India. Quaternary Int 213:79–90CrossRefGoogle Scholar
  126. Liu Xinyao, Shi Miao, Liao Yonghong, Gao Yin, Zhang Zhongkai, Wen Donghui, Wu Weizhong (2006) An Chencai Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion progress. Microb Ecol 31:315–325Google Scholar
  127. Livingstone D, Whitton BA (1983) Influence of phosphorus on morpho­logy of Calothrix parietina (Cyanophyta) in culture. Br Phycol J 18:29–38CrossRefGoogle Scholar
  128. Livingstone D, Whitton BA (1984) Water chemistry and phosphatase activity of the blue-green alga Rivularia in Upper Teesdale streams. J Ecol 72:405–421CrossRefGoogle Scholar
  129. Livingstone D, Khoja TM, Whitton BA (1983) Influence of phosphorus on physiology of a hair-forming blue-green alga (Calothrix parietina) from an upland stream. Phycologia 22:345–350CrossRefGoogle Scholar
  130. Livingstone D, Pentecost A, Whitton BA (1984) Diel variations in nitrogen and carbon dioxide fixation by the blue-green alga Rivularia in an upland stream. Phycologia 23:125–133CrossRefGoogle Scholar
  131. Maehr H, Smallheer JM (1984) Rivularins. Preliminary synthetic studies. Org Chem 49:1549–1553CrossRefGoogle Scholar
  132. Mahasneh IA, Grainger SLJ, Whitton BA (1990) Influence of salinity on hair formation and phosphatase activities of the blue-green alga (cyanobacterium) Calothrix viguieri D253. Br Phycol J 25:25–329CrossRefGoogle Scholar
  133. Mateo P, Douterelo I, Berrendero E, Perona E (2006) Physiological differences between two species of cyanobacteria in relation to phosphorus limitation. J Phycol 42:61–66CrossRefGoogle Scholar
  134. Mateo P, Berrendero E, Perona E, Loza V, Whitton BA (2010) Phosphatase activities of cyanobacteria as indicators of nutrient status in a Pyrenees river. Hydrobiologia 652:255–268CrossRefGoogle Scholar
  135. Maxwell TF (1974) Developmental morphology of the blue-green alga, Gloeotrichia echinulata. J Phycol 10 (Suppl):4Google Scholar
  136. McErlean CSP, Sperry J, Blake AJ, Moody CJ (2007) Synthesis of the calothrixins, pentacyclic indolo[3,2-j]phenanthridine alkaloids, using a biomimetic approach. Tetrahedron 63(45):10963–10970CrossRefGoogle Scholar
  137. Mobberley JM, Ortega MC, Foster JS (2011) Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol. doi: 10.1111/j.1462-2920.2011.02509.x
  138. Mohamed ZA, El-Sharouny HM, Ali WSM (2006) Microcystin production in benthic mats of cyanobacteria in the Nile River and irrigation canals, Egypt. Toxicon 47:584–590PubMedCrossRefGoogle Scholar
  139. Monty CLV (1967) Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Ann Soc Geol Belg Bull 96:585–624Google Scholar
  140. Mulec J, Kosi G, Vrhovsek D (2007) Algae promote growth of stalagmites and stalactites in karst caves (Skocjanske jame, Slovenia). Carbonates Evaporites 22:6–9CrossRefGoogle Scholar
  141. Müller-Stoll WR (1986) Der Cyanophyceen-Bewuchs der Furchen- oder Hirnsteine des Bodensees. Carolinea 44:51–60Google Scholar
  142. Myshrall KL, Mobberley JM, Green SJ, Visscher PT, Havemann SA, Reid RP, Foster JS (2010) Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8(4):337–354PubMedCrossRefGoogle Scholar
  143. Norton RS, Wells RJ (1982) A series of chiral polybrominated ­biindoles from the blue-green marine algae Rivularia firma. Applications of 13C NMR spin-lattice relaxation data and 123H-1H coupling constants to structure elucidation. J Am Chem Soc 104:3628–3635CrossRefGoogle Scholar
  144. Obenlüneschloss J, Schneider J (1991) Ecology and calcification patterns of Rivularia (Cyanobacteria). Algol Stud 64:489–502Google Scholar
  145. Osa-Afiana LO, Alexander M (1981) Factors affecting predation by a microcrustacean (Cypris sp.) on nitrogen-fixing blue-green algae. Soil Biol Biochem 13:27–32CrossRefGoogle Scholar
  146. Pedersen M, DaSilva EJ (1973) Simple brominated phenols in the blue-green alga Calothrix brevissima West. Planta 115:83–86CrossRefGoogle Scholar
  147. Pentecost A (1987) Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc R Soc Lond B 232:125–136CrossRefGoogle Scholar
  148. Pentecost A, Franke U (2010) Photosynthesis and calcification of the stromatolitic freshwater cyanobacterium Rivularia. Eur J Phycol 45:345–353CrossRefGoogle Scholar
  149. Pentecost A, Riding R (1986) Calcification in cyanobacteria. In: Leadbeater BSC, Riding R (eds) Biomineralization of lower plants and animals. Clarendon, Oxford, pp 73–90Google Scholar
  150. Pentecost A, Whitton BA (2000) Limestones. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 257–279, 668 ppGoogle Scholar
  151. Pereira I, Moya M, Reyes G, Kramm V (2005) A survey of heterocystous cyanobacteria in Chilean rice-fields. Gayana Bot 62(1):26–32Google Scholar
  152. Pettersson K (1980) Alkaline phosphatase activity and algal surplus phosphorus as phosphorus deficiency indicators in Lake Erken. Arch Hydrobiol 89:54–87Google Scholar
  153. Pettersson K, Istvánovics V, Pierson D (1990) Effects of vertical mixing on phytoplankton phosphorus supply during summer in Lake Erken. Verh Int Verein Limnol 24:236–241Google Scholar
  154. Pettersson K, Herlitz E, Istvánovics V (1993) The role of Gloeotrichia echinulata in the transfer of phosphorus from sediments to water in Lake Erken. Hydrobiologia 253:123–129CrossRefGoogle Scholar
  155. Phillips W (1884) The breaking of the Shropshire meres. Trans Shropshire Archaeol Nat Hist Soc 7:277–300Google Scholar
  156. Planavsky N, Reid RP, Lyons TW, Myshrall KL, Visscher PT (2009) Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7:566–576PubMedCrossRefGoogle Scholar
  157. Potts M, Whitton BA (1977) Nitrogen fixation by blue-green algal communities in the intertidal zone of the Lagoon of Aldabra Atoll. Oecologia 27:275–283CrossRefGoogle Scholar
  158. Power ME, Stewart AJ, Matthews WJ (1988) Grazer control of algae in an Ozark mountain stream: effects of short-term exclusion. Ecology 69:1894–1898CrossRefGoogle Scholar
  159. Prasanna R, Pabby A, Saxena S, Singh PK (2004a) Modulation of pigment profiles of Calothrix elenkenii in response to environmental changes. J Plant Physiol 161:1125–1132PubMedCrossRefGoogle Scholar
  160. Prasanna R, Pabby A, Singh PK (2004b) Effect of glucose and light-dark environment on pigmentation profiles in the cyanobacterium Calothrix elenkenii. Folia Microbiol (Praha) 49:26–30CrossRefGoogle Scholar
  161. Querijero-Palacpac NM, Martinez MR, Boussiba S (1990) Mass cultivation of the nitrogen-fixing cyanobacterium Gloeotrichia natans, indigenous to rice-fields. J Appl Phycol 2:319–325CrossRefGoogle Scholar
  162. Rai AK, Pandey KD, Kashyap AK (1978) Heterocyst differentiation in Calothrix. New Phytol 81:647–651CrossRefGoogle Scholar
  163. Reed RH, Stewart WDP (1983) Physiological responses of Rivularia atra: osmotic adjustment to hypersaline media. New Phytol 95:595–603CrossRefGoogle Scholar
  164. Reyes J, Sansón M (1997) Temporal distribution and reproductive pheno­logy of the epiphytes on Cymodocea nodosa leaves in the Canary Islands. Bot Mar 40:1–6CrossRefGoogle Scholar
  165. Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55(47):13513–13520CrossRefGoogle Scholar
  166. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61CrossRefGoogle Scholar
  167. Rippka R, Castenholz RW, Herdman M (2001a) Subsection IV.II form-genus I. Calothrix Agardh 1824. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 582–585, 721 ppGoogle Scholar
  168. Rippka R, Castenholz RW, Herdman M (2001b) Subsection IV.II form-genus II. Rivularia Agardh 1824. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 586–587, 721 ppGoogle Scholar
  169. Rippka R, Castenholz RW, Herdman M (2001c) Subsection IV. (Formerly Nostocales Castenholz 1989b sensu Rippka, Deruelles, Waterbury, Herdman and Stanier 1979) In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. vol 1, 2nd edn. Springer, New York, pp 562–599, 721 ppGoogle Scholar
  170. Roddy HJ (1915) Concretions in streams formed by the agency of blue green algae and related plants. Proc Am Phil Soc 54:246–258Google Scholar
  171. Rodhe W (1949) Environmental requirements of fresh-water plankton algae. Symb Bot Ups X:149Google Scholar
  172. Roelofs TD, Oglesby RT (1970) Ecological observations on the planktonic cyanophyte Gloeotrichia echinulata. Limnol Oceanogr 15:224–229CrossRefGoogle Scholar
  173. Rosenberg G, Paerl HW (1981) Nitrogen fixation by blue-green algae associated with the siphonous green seaweed Codium decorticum. Mar Biol 61:151–158CrossRefGoogle Scholar
  174. Rother JA, Aziz A, Hye Karim N, Whitton BA (1988) Ecology of deepwater rice-fields in Bangladesh 4. Nitrogen dixation by blue-green algal communities. Hydrobiologia 169:43–56CrossRefGoogle Scholar
  175. Rott E (1991) Oncoids from the summer-warm River Alz (Bavaria) – mophology and dominant cyanophytes. Algol Stud 64:469–482Google Scholar
  176. Ruangsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW (2006) Lead (Pb2+) removal from wastewater by the cyanobacterium Calothrix marchica. Kasetsart J (Nat Sci) 40:784–794Google Scholar
  177. Ruiz-Ramírez R, Espinosa-Chávez F, Martínez-Jerónimo F (2005) Growth and reproduction of Pomacea patula catemacensis Baker, 1922 (Gastropoda: Ampullariidae) when fed Calothrix sp (Cyanobacteria). J World Aquacult Soc 36:87–95CrossRefGoogle Scholar
  178. Sabater S (1989) Encrusting algal communities in a Mediterranean river basin. Arch Hydrobiol 114:555–573Google Scholar
  179. Sabater S, Guasch H, Romani A, Muñoz I (2000) Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodivers Conserv 9:379–392CrossRefGoogle Scholar
  180. Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109PubMedCrossRefGoogle Scholar
  181. Schäfer A, Stapf KRG (1978) Permian Saar-Nahe basin and recent Lake Constance (Germany): two environments of lacustrine algal carbonates. Spec Publ Int Assoc Sediment 2:83–107Google Scholar
  182. Schlegel I, Doan NT, de Chazal N, Smith GD (1998) Antibiotic sensitivity of cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479CrossRefGoogle Scholar
  183. Schneider SC, Lindstrøm E-A (2011) The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 685:143–156CrossRefGoogle Scholar
  184. Schwenender S (1894) Zur Wachstumgeschichte der Rivularien. Sber Preuss Akad Wissensch, Berlin, pp 951–961Google Scholar
  185. Shalini IM, Dhar DW, Gupta RK (2008) Phylogenetic analysis of cyanobacterial strains of genus-Calothrix by single and multiplex randomly amplified polymorphic DNA-PCR. World J Microbiol Biotechnol 24:927–935CrossRefGoogle Scholar
  186. Shehata FHA, Whitton BA (1981) Field and laboratory studies on blue-green algae from aquatic sites wutg high zinc levels. Verh Int Verein Limnol 21:1466–1471Google Scholar
  187. Sigler WV, Bachofen R, Zeyer J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627PubMedCrossRefGoogle Scholar
  188. Sihvonen LM, Lyra C, Fewer DP, Rajaniemi-Wacklin P, Lehtimäki JM, Wahlsten M, Sivonen K (2007) Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiol Ecol 61:74–84PubMedCrossRefGoogle Scholar
  189. Sinclair C, Whitton BA (1977a) Influence of nutrient deficiency on hair formation in the Rivulariaceae. Br Phycol J 12:297–313CrossRefGoogle Scholar
  190. Sinclair C, Whitton BA (1977b) Influence of nitrogen source on morphology of Rivulariaceae (Cyanophyta). J Phycol 13:335–340Google Scholar
  191. Singh RN, Tiwari DN (1970) Frequent heterocyst germination in the blue-green alga Gloeotrichia ghosei Dingh. J Phycol 6:172–176Google Scholar
  192. Skácelová O (2006) Dichothrix ledereri sp. nova, a new cyanobacterium from old coal/mining deposits, and occurrence of the genus Dichothrix (Cyanobacteria, Nostocales) in the Czech Republic. Algol Stud 121:1–21CrossRefGoogle Scholar
  193. Skulberg OM (2000) Microalgae as a source of bioactive molecules – experience from cyanophyte research. J Appl Phycol 12:341–348CrossRefGoogle Scholar
  194. Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344CrossRefGoogle Scholar
  195. Smith RV, Peat A (1967) Comparative structure of the gas-vacuoles of blue-green algae. Arch Mikrobiol 57:111–122CrossRefGoogle Scholar
  196. Snoeijs P, Murasi LK (2004) Symbiosis between diatoms and cyanobacterial colonies. Vie Milieu 54:163–170Google Scholar
  197. Spodniewska I (1971) The influence of experimental increase of biomass of the blue-green algae Gloeotrichia echinulata (Smith) Richter on phytoplankton production. Ekol Pol 19:475–483Google Scholar
  198. Srivastava AK, Bhargava P, Kumar A, Rai LC, Neilan BA (2009) Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Syst 5/1/4:17. doi: 10.1186/1746-1448-5-4
  199. Stewart WDP (1967) Nitrogen turnover in fresh and marine habitats. II. Use of 15N in measuring nitrogen fixation in the field. Ann Bot N.S. 31:385–407Google Scholar
  200. Taton A, Grusibic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270CrossRefGoogle Scholar
  201. Thajuddin N, Muralitharan G, Sundaramoorthy M, Ramamoorthy R, Ramachandran S, Akbarsha MA, Gunasekaran M (2010) Morpholo­gical and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microbiol 50:254–265PubMedCrossRefGoogle Scholar
  202. Theivendirarajah K, Jeyaseelan K (1977) The ingestion of blue-green algae by mosquito larvae. Ceylon J Sci Biol Sci 12:156Google Scholar
  203. Thomazeau S, Houdan-Fourmont A, Couté A, Duval C, Couloux A, Rousseau F, Bernard C (2010) The contribution of sub-Saharan African strains to the phylogeny of cyanobacteria: focusing on the Nostocaceae (Nostocales, Cyanobacteria). J Phycol 46:564–579CrossRefGoogle Scholar
  204. Trautman DA, Borowitzka MA (1999) Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Mar Ecol Prog Ser 179:215–229CrossRefGoogle Scholar
  205. Turner BL, Baxter R, Ellwood NTW, Whitton BA (2003a) Seasonal phosphatase activities of mosses from Upper Teesdale, northern England. J Bryol 25:189–200CrossRefGoogle Scholar
  206. Turner BL, Baxter R, Whitton BA (2003b) Nitrogen and phosphorus in soil solutions and drainage streams in Upper Teesdale, northern England: implications of organic compounds for biological nutrient limitation. Sci Total Environ 314–316C:153–170CrossRefGoogle Scholar
  207. Tymowski RG, Duthie HC (2000) Life strategy and phosphorus relations of the cyanobacterium Gloeotrichia echinulata in an oligotrophic Precambrian Shield lake. Arch Hydrobiol 148:321–332Google Scholar
  208. Uku J, Björk M, Bergman B, Diez B (2007) Characterization and comparison of prokaryotic epiphytes associated with three East African seagrasses. J Phycol 43:768–779CrossRefGoogle Scholar
  209. Vaidya HM (1989) Comparative studies on Calothrix isolates from Nepalese rice-fields. M.Sc. thesis, University of Durham, DurhamGoogle Scholar
  210. Van Geel B, de Lange L, Wiegers J (1984) Reconstruction and interpretation of the local vegetational succession of a Lateglacial deposit from Usselo (The Netherlands), based on the analysis of micro- and macrofossils. Acta Bot Neerl 33(4):535–546Google Scholar
  211. Van Wagoner RM, Drummond AK, Jeffrey LC, Wright JLC (2007) Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol 61:89–217PubMedCrossRefGoogle Scholar
  212. Vuorio K, Meili M, Sarvala J (2009) Natural isotopic composition of carbon(δ13C) correklates with colony size in the planktonic cyano­bacterium Gloeotrichia echinulata. Limnol Oceanogr 54(3):925–929CrossRefGoogle Scholar
  213. Webber EE (1967) Bluegreen algae from a Massachusetts salt marsh. Bull Torrey Bot Club 94:99–106CrossRefGoogle Scholar
  214. Weckesser J, Hofmann K, Jürgens EJ, Whitton BA, Raffelberger B (1988) Isolation and chemical analysis of the sheaths of the filamentous cyanobacteria Calothrix parietina and C. scopulorum. J Gen Microbiol 134:629–634Google Scholar
  215. West W (1912) Fresh-water algae. In: Clare Island survey. Proc R Irish Acad XXXI(Pt 16):1–62Google Scholar
  216. Whitton BA (1987) The biology of Rivulariaceae. In: Fay P, Van Baalen C (eds) The Cyanobacteria – a comprehensive review. Elsevier, Amsterdam, pp 513–534, 543 ppGoogle Scholar
  217. Whitton BA (1988) Hairs in eukaryotic algae. In: Round FE (ed) Algae and the aquatic environment contributions in honour of J.W.G.Lund. Biopress, Bristol, pp 446–460, 460 ppGoogle Scholar
  218. Whitton BA (1989) Genus I. Calothrix Agardh 1824. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3, 1st edn. Williams & Wilkins, Baltimore, pp 1791–1794Google Scholar
  219. Whitton BA (2007) The blue-green algae of Clare Island, Co. Mayo, Ireland. In: New Survey of Clare Island, vol 6: the freshwater and terrestrial algae. Royal Irish Academy, Dublin, pp +141–178, 254 ppGoogle Scholar
  220. Whitton BA (2008) Cyanobacterial diversity in relation to the environment. In: Evangelista V, Barsanti L, Frassanito AM, Gualtieri P, Passarelli V (eds) Algal toxins, nature, occurrence, effect and detection. Springer, Dordrecht, pp 17–35, 399 ppCrossRefGoogle Scholar
  221. Whitton BA (2009) Phosphorus status and the naming of freshwater algae. Algas 41:20–22Google Scholar
  222. Whitton BA (2011) Phylum cyanobacteria (Cyanophyta). In: John DM, Whiton BA, Brook AJ (eds) The freshwater algal flora of the British Isles, 2nd edn. Cambridge University Press, Cambridge, pp 31–158, 878 ppGoogle Scholar
  223. Whitton BA, Neal C (2010) Organic phosphate in UK rivers and its relevance to algal and bryophyte surveys. Int J Limnol 47:1–8Google Scholar
  224. Whitton BA, Potts M (eds) (2000) The ecology of cyanobacteria. Their diversity in time and space. Springer, Dordrecht, 669 ppGoogle Scholar
  225. Whitton BA, Gale NL, Wixson BG (1981) Chemistry and plant ecology of zinc-rich wastes dominated by blue-green algae. Hydrobiologia 83:331–341CrossRefGoogle Scholar
  226. Whitton BA, Grainger SLJ, Harris N (1986) Blue heterocysts in the Rivulariaceae. Br Phycol J 21(3):338–339Google Scholar
  227. Whitton BA, Aziz A, Francis P, Rother JA, Simon JW, Tahmida ZN (1988a) Ecology of deepwater rice-fields in Bangladesh. 1. Physical and chemical environment. Hydrobiologia 169:3–22CrossRefGoogle Scholar
  228. Whitton BA, Aziz A, Rother JA (1988b) Ecology of deepwater rice-fields in Bangladesh. 3. Associated algae and macrophytes. Hydrobiologia 169:31–42CrossRefGoogle Scholar
  229. Whitton BA, Grainger SLJ, Hawley GRW, Simon JW (1991) Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol 21:85–98CrossRefGoogle Scholar
  230. Whitton BA, Yelloly JM, Christmas M, Hernández I (1998) Surface phosphatase activity of benthic algal communities in a stream with highly variable ambient phosphate concentrations. Verh Int Verein Limnol 26:967–972Google Scholar
  231. Whitton BA, Al-Shehri AH, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, pp 205–241, 399 ppCrossRefGoogle Scholar
  232. Wickstrom CE, Castenholz W (1985) Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring. Ecology 66:1024–1241CrossRefGoogle Scholar
  233. Wilkinson CR, Sammarco PW, Trott LA (1985) Seasonal and fish grazing effects on rates of nitrogen fixation on coral reefs (Great Barrier Reef, Australia). In: Proceedings of the 5th international coral reef congress, vol 4l, Tahiti, pp 61–65Google Scholar
  234. Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 487–493, 721 ppGoogle Scholar
  235. Wood P (1984) Structural and physiological studies on the effects of mineral deficiencies on the Rivulariaceae (Cyanobacteria), vols I and II. Ph D thesis (CNAA), Sunderland Polytechnic (now Sunderland University), UKGoogle Scholar
  236. Wood P, Peat A, Whitton BA (1986) Influence of phosphorus status on fine structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47:89–99Google Scholar
  237. Yelloly JM, Whitton BA (1996) Seasonal changes in ambient phosphate and phosphatase activities of the cyanobacterium Rivularia atra in intertidal pools at Tyne Sands, Scotland. Hydrobiologia 325:201–212CrossRefGoogle Scholar
  238. Zarmouh MM (2010) Antibacterial activity of Rivularia species and Oscillatoria salina collected from coastal region of Misurata, Libya. J Arab Soc Med Res 5(2):159–163Google Scholar
  239. Zehnder A (1963) Kulturversuch mit Gloeotrichia echinulata (J. E. Smith) P. Richter. Schweiz Z Hydrol 25:65–83Google Scholar
  240. Zhao-Liang X (1984) Investigation on the procaryotic microfossils from Gaoyuzhuang Formation, Jixian, North China. Acta Bot Sin 26(216–222):312–319Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Biological and Biomedical SciencesDurham UniversityDurhamUK
  2. 2.Departamento de Biologia, Facultad de CienciasUniversidad Autonoma de MadridMadridSpain

Personalised recommendations