Introduction to the Cyanobacteria

  • Brian A. Whitton
  • Malcolm Potts


Features of cyanobacteria are introduced for non-specialists by highlighting topics in the various chapters. Aspects where much more is known now than a decade ago are pointed out, such as the importance of cyanobacterial nitrogen fixation in the oceans. This is followed by an account of the recent molecular studies most relevant for ecologists, especially topics not mentioned elsewhere in the book. Several ecological subjects of current interest are discussed, including research which seems important, but has sometimes been overlooked. Topics mentioned include sensing the environment and other organisms and signalling between cyanobacterial cells and between cyanobacteria and other organisms, and methods for studying N and P. The authors air their views on past and present matters concerning cyanobacterial taxonomy and nomenclature. Finally, comments are made on practical topics such as the use of cyanobacteria for inoculating soils, barley straw to control blooms and the likely contribution of cyanobacteria to developments in algal biotechnology during the coming decade.


Rice Straw Cyanobacterial Bloom Soil Biological Crust Barley Straw Eukaryotic Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albertano P, Barsanti L, Passarelli V, Gaultieri P (2000) A complex photoreceptive structure in the cyanobacterium Leptolyngbya sp. Micron 31:27–34PubMedCrossRefGoogle Scholar
  2. Allen MM, Stanier RY (1968) Growth and division of some unicellular blue-green algae. J Gen Microbiol 51:199–202PubMedCrossRefGoogle Scholar
  3. Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Appendix A – Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Amsterdam, pp 429–532, 578 ppGoogle Scholar
  4. Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163Google Scholar
  5. Balskus EP, Walsh CT (2010) The genetic and mole­cular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656PubMedCrossRefGoogle Scholar
  6. Berrendero E, Perona E, Mateo P (2008) Genetic and morpholo­gical characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 58:447–454PubMedCrossRefGoogle Scholar
  7. Bothe H, Tripp HJ, Zehr JP (2011) Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192(10):783–790CrossRefGoogle Scholar
  8. Boylan JD, Morris JE (2003) Limited effects of barley straw on algae and zooplankton in a midwestern pond. Lake Reserv Manage 19:265–271CrossRefGoogle Scholar
  9. Braun W, Bachofen R (2004) Homoserine-lactones and microcystin in cyanobacterial assemblages in Swiss lakes. Hydrobiologia 522:271–280CrossRefGoogle Scholar
  10. Brownlee EF, Sellner SG, Sellner KG (2003) Effects of barley straw (Hordeum vulgare) on freshwater and brackish phytoplankton and cyanobacteria. J Appl Phycol 15:525–531CrossRefGoogle Scholar
  11. Castenholz RW (1983) Motility and taxes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 413–440, 688 ppGoogle Scholar
  12. Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York (with individual sections by different groups of authors)Google Scholar
  13. Castenholz RW, Waterbury JB (1989) Cyanobacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1710–1727Google Scholar
  14. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Weischmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343CrossRefGoogle Scholar
  15. Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae. Part I. Methods and culture media. J Ecol 30:284–325CrossRefGoogle Scholar
  16. Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407PubMedGoogle Scholar
  17. Díez B, Bergman B, El-Shehawy R (2008) Marine diazotrophic cyanobacteria: out of the blue. Plant Biotechnol 25:221–225CrossRefGoogle Scholar
  18. Dignum M, Matthijs HCP, Pel R, Laanbroek HJ, Mur LR (2005) Nutrient limitation of freshwater cyanobacteria. In: Huisman J, Matthijs CP, Visser PM (eds) Harmful cyanobacteria. Springer, Dordrecht, pp 65–86, 241 ppCrossRefGoogle Scholar
  19. Dittmann E, Erhard M, Kaerbernick M, Scheler C, Neilan BA, von Dühren H, Borner T (2001) Altered expression of two-light dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiology 147:3113–3119PubMedGoogle Scholar
  20. Domínguez-Escobar J, Beltrán Y, Bergman B, Díez B, Ininbergs K, Souza V, Falcón LI (2011) Phylogenetic and molecular clock inferences within Rivulariaceae from distant environments. FEMS Microb Lett 316(2):90–99Google Scholar
  21. Drouet F (1968) Revision of the classification of the oscillatoriaceae, Monographs of the Academy of Natural Sciences, 15. Academy of Natural Sciences, Philadelphia, 334 ppGoogle Scholar
  22. Drouet F (1981) Summary of the classification of blue-green algae. Beih Nova Hedwigia 66:135–209Google Scholar
  23. Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9(5):R91-16CrossRefGoogle Scholar
  24. Dyhrman ST, Haley ST (2006) Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl Environ Microbiol 72:1452–1458PubMedCrossRefGoogle Scholar
  25. Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb E (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71PubMedCrossRefGoogle Scholar
  26. El-Shehawy R, Lugomela C, Ernst A, Bergman B (2003) Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. Microbiology 149:1139–1146PubMedCrossRefGoogle Scholar
  27. Everall NC, Lees DR (1997) The identification and significance of chemicals released from decomposing barley straw during reservoir algal control. Water Res 31:614–620CrossRefGoogle Scholar
  28. Fialkowska E, Pajdak-Stós A (1997) Inducible defence against a ciliate grazer, Pseudomicrothorax dubius, in two strains of Phormidium (cyanobacteria). Proc R Soc Lond B 264:937–941CrossRefGoogle Scholar
  29. Garcia-Pichel F, Belnap J, Neuer S, Schanz F (2003) Estimates of global cyanobacterial biomass and its distribution. Algol Stud 109:213–227CrossRefGoogle Scholar
  30. Garcia-Pichel F, Ramírez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca++ transport. PNAS 107(50):21749–21754Google Scholar
  31. Geiger S, Henry E, Hayes P, Haggard K (2005) Barley straw – algae control literature analysis. Available on internet in 2011 as
  32. Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 14. Akademische Verlagsgesellschaft, Leipzig, 1356 ppGoogle Scholar
  33. Henson BJ, Hessbrock SM, Watson LE, Barnum SR (2004) Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nifD. Int J Syst Ecol Microbiol 54:493–497CrossRefGoogle Scholar
  34. Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (cyanobacteria) – system in 2004. Algol Stud 117(Cyanobacterial Research 6):95–115CrossRefGoogle Scholar
  35. Jang M-H, Jung J-M, Takamura N (2007) Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemical concentrations. Limnol Oceanogr 52(4):1454–1466CrossRefGoogle Scholar
  36. Jezberová J, Komárková J (2007) Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol 9:1858–1862PubMedCrossRefGoogle Scholar
  37. Jones AC, Monroea EA, Podell S, Hess WR, Klages S, Esquenazia E, Niessene S, Hoover H, Rothmann M, Laskeng RS, Yates JR III, Richard Reinhardt R, Kube M, Burkart MD, Allen EE, Dorrestein PC, Gerwick WH, Gerwick L (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci USA 108:8815–8820PubMedCrossRefGoogle Scholar
  38. Kauff F, Büdel B (2011) Phylogeny in cyanobacteria: an overview. Prog Bot/Fortschr Bot 72:209–224Google Scholar
  39. Kerbrat AS, Amzil Z, Pawlowiez GS, Sibat M, Darius HT, Chinain M, Laurent D (2011) First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar Drugs 9:543–560PubMedCrossRefGoogle Scholar
  40. Kettler G, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, Steglich C, Church G, Richardson P, Chisholm SW (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3:e231Google Scholar
  41. Knight CD, Adams DG (1996) A method for studying chemotaxis in nitrogen-fixing cyanobacterium-plant symbioses. Physiol Mol Plant Pathol 49:73–77CrossRefGoogle Scholar
  42. Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259CrossRefGoogle Scholar
  43. Komárek J, Anagnostidis K (1999) Cyanoprokaryota 1. Teil. Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 19/1. Gustav Fisher, Jena/Stuttgart/Lübeck/Ulm, 548 ppGoogle Scholar
  44. Komárek J, Anagnostidis K (2005) Cyanoprokaryota: 2.Teil/Part 2. Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süßwasserflora von Mitteleuropa 19/2. Spektrum/Elsevier, Heidelberg, 759 pp (Reprinted in 2008 by Spektrum/Springer)Google Scholar
  45. Koprowska L (1995) Sukcesja fauny dennej w zbiornikach powstałych po wydobyciu wegla brunatnego [Succession of bottom fauna in lignite post-mining reservoirs]. Olsztyn, 112 ppGoogle Scholar
  46. Kosten S, Huszar VLM, Bécares E, Costa LS, Van Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, DE Meester L, Moss B, Lürling M, Nöges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18:118–126Google Scholar
  47. Kratz WA, Myers J (1955) Nutrition and growth of several blue-green algae. Am J Bot 42:282–287CrossRefGoogle Scholar
  48. Larsson J, Nylander JAA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187–208PubMedCrossRefGoogle Scholar
  49. Liu X, Sheng J, Curioss R (2011) Fatty acid production in genetically modi­fied cyanobacteria. Proc Natl Acad Sci USA 108(17):6899–6904PubMedCrossRefGoogle Scholar
  50. Lu Y-M, Xiang W-Z, Wen Y-H (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:264–269Google Scholar
  51. Lundgren P, Lugomeia C, Söderback E, Bergman B (2003) Reevaluation of the nitrogen fixation behavior in the marine non-heterocystous cyanobacterium Lyngbya majuscula. J Phycol 39(2):310–314CrossRefGoogle Scholar
  52. Mann NH (2000) Detecting the environment. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 367–395, 669 ppGoogle Scholar
  53. Morris JJ, Johnson ZI, Martin J, Szul MJ, Keller M, Zinser ER (2011) Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface. Plos One 6(2):1–13Google Scholar
  54. Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T, Sato S, Tabata S, Kaneko T, NakamuraY (2010) CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acid Res 38 (Database issue):D379–D381. doi: 10.1093/nar/gkp915
  55. Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55:382–390Google Scholar
  56. Ó hUallacháin D, Fenton O (2010) Barley (Hordeum vulgare)-inducated growth inhibitors of algae: a review. J Appl Phycol 22:651–658CrossRefGoogle Scholar
  57. Oren A (2004) A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902PubMedCrossRefGoogle Scholar
  58. Oren A (2011) Cyanobacterial systematics and nomenclature as featured in the International Bulletin of Bacteriological Nomenclature and Taxonomy/International Journal of Systematic Bacteriology/International Journal of Systematic and Evolutionary Microbiology. Int J Syst Evol Microbiol 61:1–15CrossRefGoogle Scholar
  59. Oren A, Tindall BJ (2005) Nomenclature of the cyanophyta/ cyanobacteria/cyanoprokaryotes under the International Code of Nomenclature of Prokaryotes. Algol Stud 117:39–52CrossRefGoogle Scholar
  60. Palmer CM (1962) Algae in water supplies. U.S. Department of Health, Education, and Welfare Division of Water Supply and Pollution Control, Washington, DC, 88 ppGoogle Scholar
  61. Pearson LA, Hisbergues M, Börner T, Dittmann E, Neilan BA (2004) Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70:6370–6378PubMedCrossRefGoogle Scholar
  62. Pierce J, Omata T (1988) Uptake and utilization of inorganic carbon by cyanobacteria. Photosynth Res 16:141–154Google Scholar
  63. Pillinger J, Cooper JA, Ridge I (1994) Role of phenolic compounds in the antialgal activity of barley straw. J Chem Ecol 20(7):1557–1569CrossRefGoogle Scholar
  64. Rajeniemi P, Komárek J, Hrouizek P, Willame R, Kaštovská K, Hoffmann L, Sivonen K (2005) Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Algol Stud 117:371–376CrossRefGoogle Scholar
  65. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea water. In: Hill MH (ed) The sea, vol 2. Wiley-Interscience, Hoboken, pp 26–77Google Scholar
  66. Rice EL, Lin C-Y, Huang C-Y (1980) Effects of decaying rice straw on growth and nitrogen fixation of a blue-green alga. Bot Bull Acad Sin 21:111–117Google Scholar
  67. Rippka R, DeRuelles JB, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignment, strain histories, and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61CrossRefGoogle Scholar
  68. Rohrlack T, Hyenstrand P (2007) Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 46:277–283CrossRefGoogle Scholar
  69. Rosetti V, Schirrmeister BE, Bernasconi MV, Bagheri HC (2010) The evolutionary path to terminal differentiation and division of labor in cyanobacteria. J Theor Biol 262:23–34CrossRefGoogle Scholar
  70. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:398–431CrossRefGoogle Scholar
  71. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262Google Scholar
  72. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562PubMedCrossRefGoogle Scholar
  73. Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origins of multicellularity in cyanobacteria. BMC Evol Biol 11:1–28Google Scholar
  74. Stace CA (2010) Classification by molecules: what’s in it for field botanists. Watsonia 28:103–122Google Scholar
  75. Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R, Gherna RL, Trüper HG (1978) Proposal to place nomenclature of cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28:335–336CrossRefGoogle Scholar
  76. Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Pichel F, Kuske CR (2011) The genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol. doi: 10.1128/JB.05138-11
  77. Steinberg CEW, Schäfer H, Beisker W, Brüggemann R (1998) Deriving restoration goals for acidified lakes from taxonomic studies. Restor Ecol 6:327–335CrossRefGoogle Scholar
  78. Stucken K, John U, Cembella A, Murillo AM, Soto-Liebe K, Fuentes-Valdés JJ, Friedel M, Plominsky AM, Vásquez M, Glöckner G (2010) The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. Plos One 5(2): e9235, 15 pp. doi: 10.1371/journal.pone.0009235
  79. Van Donk E, Ianora A, Vos M (2011) Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668:3–19CrossRefGoogle Scholar
  80. van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, van der Gucht K, Debeer A-E, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. Plos One 6:1–12Google Scholar
  81. van Liere L, Walsby AE (1982) Interactions of cyanobacteria with light. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell/University of California Press, Oxford/Berkeley, pp 9–45, 655 ppGoogle Scholar
  82. Van Mooy BAS, Hmelo LR, Sofen LE, Campagna SR, May AL, Dyhrman ST, Heithoff A, Webb EA, Momper L, Mincer TJ (2012) Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME J 6(2):422–429Google Scholar
  83. Wagner F, Falkner G (2001) Phosphate limitation. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Springer, Heidelberg/New York, pp 65–110CrossRefGoogle Scholar
  84. Waterbury JB, Willey JM, Franks DG, Valois FW, Watson SW (1985) A cyanobacterium capable of swimming motility. Science 230:74–76Google Scholar
  85. Waybright TJ, Terlizzi DE, Ferrier MD (2009) Chemical characterisation of the aqueous algistatic fraction of barley straw (Hordeum vulgare) inhibiting Microcystis aeruginosa. J Appl Phycol 32:333–340CrossRefGoogle Scholar
  86. Willey JM, Waterbury JB (1989) Chemotaxis toward nitrogenous compounds by swimming strains of marine Synechococcus spp. Appl Environ Microbiol. 55:1888–1894Google Scholar
  87. Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 235–255, 669 ppGoogle Scholar
  88. Whitton BA (2011) Phylum cyanobacteria (Cyanophyta). In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles, 2nd edn. Cambridge University Press, Cambridge, UK, pp 31–158, 878 ppGoogle Scholar
  89. Whitton BA, Potts M (2000) Introduction to the cyanobacteria. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 1–11, 689 ppGoogle Scholar
  90. Whitton BA, Grainger SLJ, Hawley GRW, Simon JW (1991) Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol 21:85–98CrossRefGoogle Scholar
  91. Whitton BA, Balbi DM, Donaldson A (2003) Blue-Green Algae of the British Isles Interactive key to the species. CD-ROM School of Biological and Biomedical Sciences, University of Durham, Durham, UKGoogle Scholar
  92. Whitton BA, Al-Shehri AH, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, UK, pp 205–224, 399 pp. ISBN Organic Phosphorus in the EnvironmentCrossRefGoogle Scholar
  93. Wolk CP (1983) Heterocysts. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell/University of California Press, Oxford/Berkeley, pp 359–386, 688 ppGoogle Scholar
  94. Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The Molecular biology of cyano­bacteria. Kluwer Academic Publishers, Dordrecht, pp 769–823, 669 ppGoogle Scholar
  95. Wu Y, Liu J, Yang L, Chen Hm Zhang S, Zhao J, Zhang N (2011) Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ Microbiol 13(3):604–615PubMedCrossRefGoogle Scholar
  96. Zapomĕlová E, Jezberová J, Hrouzek P, Hisem D, Řeháková K, Komárková J (2009) Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides to Sphaerospermum gen. nov. (incl Anabaena kisseleviana). J Phycol 45:1363–1373CrossRefGoogle Scholar
  97. Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112PubMedCrossRefGoogle Scholar
  98. Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyano­bacteria. Science 334(6062):1551–1553Google Scholar
  99. Zhao-Liang X (1984) Investigation on the procaryotic microfossils from Gaoyuzhuang Formation, Jixian, North China. Acta Bot Sin 26(216–222):312–319Google Scholar
  100. Zwirglmaier K, Heywood JL, Chamberlain K, Woodward EMS, Zubkov MV, Scanlan DJ (2007) Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ Microbiol 99:1278–1290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Biological and Biomedical SciencesDurham UniversityDurhamUK
  2. 2.Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar

Personalised recommendations