Skip to main content

Terahertz Control

  • Chapter
  • First Online:
  • 3423 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 173))

Abstract

Light control is essential to the design and implementation of optical systems. Basic properties that can be manipulated include the spectrum, polarisation and focusing. In this chapter we will look at a range of technologies for the manipulation of terahertz radiation, their properties and their method of implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2002)

    Google Scholar 

  2. E.D. Walsby, et al., Fabrication of multilevel silicon diffractive lenses for terahertz frequencies, in Micromachine Technology for Diffractive and Holographic Optics, pp. 79–87 ( 1999)

    Google Scholar 

  3. E.D. Walsby et al., Analysis of silicon terahertz diffractive optics. Curr. Appl. Phys. 4(2–4), 102–105 (2004)

    Article  ADS  Google Scholar 

  4. E.D. Walsby et al., Investigation of a THz Fresnel lens. Ultrafast phenomena XIII, pp. 292–294 (2003)

    Google Scholar 

  5. E.D. Walsby et al., Multilevel silicon diffractive optics for terahertz waves. J. Vac. Sci. Technol. B 20(6), 2780–2783 (2002)

    Article  Google Scholar 

  6. E.D. Walsby et al., Silicon diffractive optics at THz frequencies, in Diffractive Optics and Micro-Optics, Proceedings Volume, pp. 35–37 (2002)

    Google Scholar 

  7. S. Wang et al., Characterization of T-ray binary lenses. Opt. Lett. 27(13), 1183–1185 (2002)

    Article  ADS  Google Scholar 

  8. S. Wang, X.C. Zhang, Tomographic imaging with a terahertz binary lens. Appl. Phys. Lett. 82(12), 1821–1823 (2003)

    Article  ADS  Google Scholar 

  9. E.D. Walsby et al., Imprinted diffractive optics for terahertz radiation. Opt. Lett. 32(9), 1141–1143 (2007)

    Article  ADS  Google Scholar 

  10. E.D. Walsby et al., Fabrication of terahertz holograms. J. Vac. Sci. Technol. B 25(6), 2329–2332 (2007)

    Article  Google Scholar 

  11. M.S. Heimbeck et al., Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods. Opt. Express 19(10), 9192–9200 (2011)

    Article  ADS  Google Scholar 

  12. The Handbook of Optical Constants of Solids, vol. 3, (Academic Press Limited, London, 1998)

    Google Scholar 

  13. E. Wolf, Principles of optics. 7 edn. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  14. P.B. Clapham, M.C. Hutley, Reduction of lens reflection by Moth eye principle. Nature 244(5414), 281–282 (1973)

    Article  ADS  Google Scholar 

  15. D.H. Raguin, G.M. Morris, Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles. Appl. Opt. 32(14), 2582–2598 (1993)

    Article  ADS  Google Scholar 

  16. D.H. Raguin, G.M. Morris, Antireflection structured surfaces for the infrared spectral region. App. Opt. 32(7), 1154–1167 (1993)

    Article  ADS  Google Scholar 

  17. S.C. Saha et al., Method for vector characterization of polar liquids using frequency-domain spectroscopy. Opt. Lett. 36(17), 3329–3331 (2011)

    Article  ADS  Google Scholar 

  18. D.R.S. Cumming, R.J. Blaikie, A variable polarisation compensator using artificial dielectrics. Opt. Commun. 163(4–6), 164–168 (1999)

    Article  ADS  Google Scholar 

  19. T.D. Drysdale et al., Variable polarisation compensator using artificial dielectrics for millimetre and submillimetre waves. Electron. Lett. 37(3), 149–150 (2001)

    Article  Google Scholar 

  20. T.D. Drysdale et al., Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths. IEEE Trans. Antennas Propag. 51(11), 3072–3079 (2003)

    Article  ADS  Google Scholar 

  21. S.A. Jewell et al., Tuneable fabry-perot etalon for terahertz radiation. New J. Phys. 10, 033012 (2008)

    Google Scholar 

  22. C.J.E. Straatsma, A.Y. Elezzabi, A dual-mode terahertz filter based on a metallic resonator design. J. Infrared Millimeter Terahertz Waves 32(11), 1299–1306 (2011)

    Article  Google Scholar 

  23. E.S. Lee et al., Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides. Opt. Express 19(16), 14852–14859 (2011)

    Article  ADS  Google Scholar 

  24. N. Jin, J.-S. Li, Terahertz wave bandpass filter based on metamaterials. Microw. Opt. Technol. Lett. 53(8), 1858–1860 (2011)

    Article  MathSciNet  Google Scholar 

  25. I.S. Gregory et al., Multi-channel homodyne detection of continuous-wave terahertz radiation. Appl. Phys. Lett. 87(3), 034106 (2005)

    Google Scholar 

  26. T.D. Drysdale et al., Terahertz tuneable filters made by self-releasing deep dry etch process. Microelectron. Eng. 73–4, 441–446 (2004)

    Article  Google Scholar 

  27. T.D. Drysdale et al., Transmittance of a tunable filter at terahertz frequencies. Appl. Phys. Lett. 85(22), 5173–5175 (2004)

    Article  ADS  Google Scholar 

  28. R.J. Blaikie et al., Wide-field-of-view photonic bandgap filters micromachined from silicon. Microelectron. Eng. 73–4, 357–361 (2004)

    Article  Google Scholar 

  29. T.D. Drysdale et al., Metallic tunable photonic crystal filter for terahertz frequencies. J. Vac. Sci. Technol. B 21(6), 2878–2882 (2003)

    Article  Google Scholar 

  30. T.D. Drysdale, R.J. Blaikie, D.R.S. Cumming, A tunable photonic crystal filter for terahertz frequency applications, in Terahertz for Military and Security Applications, pp. 89–97 ( 2003)

    Google Scholar 

  31. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, Princeton, 2008)

    Google Scholar 

  32. T.D. Drysdale, R.J. Blaikie, D.R.S. Cumming, Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies. Appl. Phys. Lett. 83(26), 5362–5364 (2003)

    Article  ADS  Google Scholar 

  33. N. Fang et al., Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)

    Article  ADS  Google Scholar 

  34. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  35. X. Zhang, Z.W. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7(6), 435–441 (2008)

    Article  ADS  Google Scholar 

  36. W.S. Cai et al., Optical cloaking with metamaterials. Nat. Photonics 1(4), 224–227 (2007)

    Article  ADS  Google Scholar 

  37. D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Valentine et al., An optical cloak made of dielectrics. Nat. Mater. 8(7), 568–571 (2009)

    Article  ADS  Google Scholar 

  39. M.J. Dicken et al., Frequency tunable near-infrared metamaterials based on VO\(_{2}\) phase transition. Opt. Express 17(20), 18330–18339 (2009)

    Article  ADS  Google Scholar 

  40. N.I. Landy et al., Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Google Scholar 

  41. H. Tao et al., A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)

    Article  ADS  Google Scholar 

  42. J. Grant et al., Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36(17), 3476–3478 (2011)

    Article  ADS  Google Scholar 

  43. J. Grant et al., Polarization insensitive terahertz metamaterial absorber. Opt. Lett. 36(8), 1524–1526 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  44. D.M. Wu et al., Terahertz plasmonic high pass filter. Appl. Phys. Lett. 83(1), 201–203 (2003)

    Article  ADS  Google Scholar 

  45. K.L. Kelly et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2003)

    Article  Google Scholar 

  46. S. Maier, Plasmonics: fundamentals and applications (Springer, Berlin, 2007)

    Google Scholar 

  47. J. Grant et al., Terahertz surface plasmon resonance of periodic silicon micro-dot arrays, in 2010 IEEE Photonics Society Winter Topicals Meeting Series, 2010. pp. 34–35

    Google Scholar 

  48. J. Grant et al., Terahertz localized surface plasmon resonance of periodic silicon microring arrays. J. Appl. Phys. 109(5), 054903 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. S. Cumming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cumming, D.R., Drysdale, T.D., Grant, J.P. (2014). Terahertz Control. In: Perenzoni, M., Paul, D. (eds) Physics and Applications of Terahertz Radiation. Springer Series in Optical Sciences, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3837-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-3837-9_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-3836-2

  • Online ISBN: 978-94-007-3837-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics