Skip to main content

Cell Internalizing Anti-Mortalin Antibody for Generation of Illuminating MSCs for Long-Term In vitro and In vivo Tracking

  • Chapter
  • First Online:
Mortalin Biology: Life, Stress and Death
  • 619 Accesses

Abstract

Visualize the invisible is the most recent challenge of modern biotechnology in which the advancement of molecular and cell imaging has been prioritized. Fluorescence microscopy has become an essential tool to study biological molecules, pathways and events in vitro and in vivo for diagnostics and therapeutics. The field not only involves the development of new generation of molecules that are nontoxic and noninvasive, but also concerns their long-term stability, sensitivity and resolution in visual assays. This chapter reviews the use of quantum dots (small, light-emitting semiconductor nanocrystals) in conjugation with the anti-mortalin cell-internalizing antibody for bioimaging. The conjugate was able to enter the cells and illuminate them. The use of such illuminated cells for long-term tracking and imaging in mouse and rabbit models of cartilage and bone differentiation in vitro and in vivo is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13:436–48

    Article  PubMed  CAS  Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  PubMed  CAS  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  • Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  PubMed  CAS  Google Scholar 

  • Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 98:7841–7845

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Uemura T, Shirasaki Y, Tateishi T (2002) Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23:4493–4502

    Article  PubMed  CAS  Google Scholar 

  • Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  PubMed  CAS  Google Scholar 

  • Frangioni JV (2006) Self-illuminating quantum dots light the way. Nat Biotechnol 24:326–328

    Article  PubMed  CAS  Google Scholar 

  • Flexman JA, Minoshima S, Kim Y, Cross DJ (2006) Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking. Conf Proc IEEE Eng Med Biol Soc 1:5631–5634

    PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    PubMed  CAS  Google Scholar 

  • Gao X, Nie S (2005) Quantum dot-encoded beads. Methods Mol Biol 303:61–71

    PubMed  CAS  Google Scholar 

  • Gao X, Chan WC, Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7:532–537

    Article  PubMed  CAS  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1:73–78

    Article  PubMed  Google Scholar 

  • Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504

    Article  PubMed  CAS  Google Scholar 

  • Kagiwada H, Yashiki T, Ohshima A, Tadokoro M, Nagaya N, Ohgushi H (2008) Human mesenchymal stem cells as a stable source of VEGF-producing cells. J Tissue Eng Regen Med 2:184–189

    Article  PubMed  CAS  Google Scholar 

  • Kaji N, Tokeshi M, Baba Y (2007) Single molecule measurement with a single quantum dot. Chem Rec 7:295–304

    Article  PubMed  CAS  Google Scholar 

  • Kaul Z, Yaguchi T, Harada JI, Ikeda Y, Hirano T, Chiura HX, Kaul SC, Wadhwa R (2007) An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells. Biochem Cell Biol 85:133–140

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Uemura T (2005) Strong and rapid induction of osteoblast differentiation by Cbfa1/Til-1 overexpression for bone regeneration. J Biol Chem 280:2944–2953

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Smith CL (1997) Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras. Curr Opin Neurobiol 7:631–639

    Article  PubMed  CAS  Google Scholar 

  • Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–3130

    Article  PubMed  CAS  Google Scholar 

  • Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3:591–596

    Article  PubMed  CAS  Google Scholar 

  • Marion NW, Mao JJ (2006) Mesenchymal stem cells and tissue engineering. Methods Enzymol 420:339–361

    Article  PubMed  CAS  Google Scholar 

  • Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465

    Article  PubMed  CAS  Google Scholar 

  • Muller-Borer BJ, Collins MC, Gunst PR, Cascio WE, Kypson AP (2007) Quantum dot labeling of mesenchymal stem cells. J Nanobiotechnol 5:9

    Article  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Ohgushi H, Kitamura S, Kotobuki N, Hirose M, Machida H, Muraki K, Takakura Y (2004) Clinical application of marrow mesenchymal stem cells for hard tissue repair. Yonsei Med J 45(Suppl):61–67

    PubMed  Google Scholar 

  • Ohyabu Y, Kida N, Kojima H, Taguchi T, Tanaka J, Uemura T (2006) Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnol Bioeng 95:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Ohyabu Y, Kaul Z, Yoshioka T, Inoue K, Sakai S, Mishima H, Uemura T, Kaul SC, Wadhwa R (2009) Stable and nondisruptive in vitro/in vivo labeling of mesenchymal stem cells by internalizing quantum dots. Hum Gene Ther 20:217–224

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  • Phinney DG, Darwin J (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair. Stem cells 35:2896–2902

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 1284:143–147

    Article  Google Scholar 

  • Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Mishima H, Ishii T, Akaogi H, Yoshioka T, Ohyabu Y, Chang F, Ochiai N, Uemura T (2009) Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage. J Orthop Res 27:517–521

    Article  PubMed  Google Scholar 

  • Scott CT, Baker M (2007) Overhauling clinical trials. Nat Biotechnol 25:287–292

    Article  PubMed  CAS  Google Scholar 

  • Shiota M, Ikeda Y, Kaul Z, Itadani J, Kaul SC, Wadhwa R (2007) Internalizing antibody-based targeted gene delivery for human cancer cells. Hum Gene Ther 18:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Varas F, Graf T (2005) Fluorescent protein-cell labeling and its application in time-lapse analysis of hematopoietic differentiation. Methods Mol Med 105:395–412

    PubMed  CAS  Google Scholar 

  • Stahl A, Wu X, Wenger A, Klagsbrun M, Kurschat P (2005) Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts. FEBS Lett 579:5338–5342

    Article  PubMed  CAS  Google Scholar 

  • Stodilka RZ, Blackwood KJ, Kong H, Prato FS (2006) A method for quantitative cell tracking using SPECT for the evaluation of myocardial stem cell therapy. Nucl Med Commun 27:807–813

    Article  PubMed  Google Scholar 

  • Swieszkowski W, Tuan BH, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24:489–495

    Article  PubMed  CAS  Google Scholar 

  • Templin C, Kotlarz D, Marquart F, Faulhaber J, Brendecke V, Schaefer A, Tsikas D, Bonda T, Hilfiker-Kleiner D, Ohl L, Naim HY, Foerster R, Drexler H, Limbourg FP (2006) Transcoronary delivery of bone marrow cells to the infarcted murine myocardium: feasibility, cellular kinetics, and improvement in cardiac function. Basic Res Cardiol 101:301–310

    Article  PubMed  Google Scholar 

  • Thowfeequ S, Myatt E, Tosh D (2007) Tansdifferentiation in developmental biology, disease, and in therapy. Dev Dyn 236:3208–3217

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Dong J, Wang Y, Kojima H, Saito T, Iejima D, Kikuchi M, Tanaka J, Tateishi T (2003) Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. Biomaterials 24:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  PubMed  CAS  Google Scholar 

  • Wakitani S, Kawaguchi A, Tokuhara Y, Takaoka K (2008) Present status of and future direction for articular cartilage repair. J Bone Miner Metab 26:115–122

    Article  PubMed  Google Scholar 

  • Yoshioka T, Mishima H, Ohyabu Y, Sakai S, Akaogi H, Ishii T, Kojima H, Tanaka J, Ochiai N, Uemura T (2007) Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor. J Orthop Res 25:1291–1298

    Article  PubMed  Google Scholar 

  • Yoshioka T, Mishima H, Kaul Z, Ohyabu Y, Sakai S, Ochiai N, Kaul SC, Wadhwa R, Uemura T (2011) Fate of bone marrow mesenchymal stem cells following the allogeneic transplantation of cartilaginous aggregates into osteochondral defects of rabbits. J Tissue Eng Regen Med 5:437–443

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Yukawa H, Kagami Y, Watanabe M, Oishi K, Miyamoto Y, Okamoto Y (2010) Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 31:4094–4103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Z. Kaul, Y. Ohyabu, T. Yoshioka, S. Sakai, H. Mishima, N. Ochiai and K. Inoue for their collaboration, technical assistance and encouragement through this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimasa Uemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Uemura, T., Nishi, M., Kaul, S.C., Wadhwa, R. (2012). Cell Internalizing Anti-Mortalin Antibody for Generation of Illuminating MSCs for Long-Term In vitro and In vivo Tracking. In: Kaul, S., Wadhwa, R. (eds) Mortalin Biology: Life, Stress and Death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3027-4_19

Download citation

Publish with us

Policies and ethics