Skip to main content

Secondary Metabolites of Bacillus: Potentials in Biotechnology

  • Chapter
  • First Online:
Book cover Bacillus thuringiensis Biotechnology

Abstract

The huge diversity characterizing the Bacillus species at the taxonomic level, is also noticeable for their metabolic features. These bacteria are able to produce a wide range of secondary metabolites with very different natures and structures and displaying broad spectra of activities. These metabolites; including antibiotics, pigments, toxins, growth promoters (animals and plants), effectors of ecological competition, pheromones, enzyme inhibitors and others bioactive compounds; are originally designed to enable the bacterium to survive in its natural environment (Stein 2005). In general, these metabolites serve as; (i) competitive weapons used against other bacteria, fungi, amoebae, plants, insects and large animals; (ii) metal transporting agents; (iii) symbiosis effectors between microbes and plants, nematodes, insects and higher animals; (iv) sexual hormones; and (v) as differentiation factors (Demain and Fang 2000). This wide variability of the structure and activity of the secondary compounds expands the potential industrial importance of the genus Bacillus and its related genera (Sansinenea and Ortiz 2011). Besides, Bacillus species form spores that can be easily formulated and have high viability compared with vegetative cells. Finally they are commonly diffused in the environment including soil (Sansinenea and Ortiz 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriouel H, Franz CM, Ben Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  Google Scholar 

  • Al-Ajlani MM, Sheikh MA, Ahmad Z, Hasnain S (2007) Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microb Cell Fact 6:17

    Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GAI as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63

    Google Scholar 

  • Assie LK, Deleu M, Arnaud L, Paquot M, Thonart P, Gaspar CH, Haubruge E (2002) Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67:647–655

    CAS  Google Scholar 

  • Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238

    CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    CAS  Google Scholar 

  • Banerjee S, Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263:9508–9514

    CAS  Google Scholar 

  • Beecher DJ, Olsen TW, Somers EB, Wong ACL (2000) Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine- preferring phospholipase C, and collagenase to virulence of Bacillus cereus endophthalmitis. Infect Immun 68:5269–5276

    CAS  Google Scholar 

  • Bizani D, Brandelli A (2002) Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8A. J Appl Microbiol 93:512–519

    CAS  Google Scholar 

  • Bizani D, Motta AS, Morrissy JAC, Terra RM, Souto AA, Brandelli A (2005) Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int Microbiol 8:125–131

    CAS  Google Scholar 

  • Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230

    CAS  Google Scholar 

  • Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417

    CAS  Google Scholar 

  • Chen XH, Koumoutsia A, Scholza R, Schneiderb K, Vaterb J, Süssmuthb R, Piel J, Borrissa R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37

    CAS  Google Scholar 

  • Cherif A, Ouzari H, Daffonchio D, Cherif H, Ben Slama K, Hassen A, Jaoua S, Boudabous A (2001) Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett Appl Microbiol 32:243–247

    CAS  Google Scholar 

  • Cherif A, Chehimi S, Limem F, Hansen BM, Hendriksen NB, Daffonchio D, Boudabous A (2003) Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis subsp. Entomocidus HD9. J Appl Microbiol 95:990–1000

    CAS  Google Scholar 

  • Cherif A, Hamdi C, Essanaa J, Rezgui W, Raddadi N, Rizzi A, Daffonchio S, Barbouche N, Boudabous A (2007) Versatility of Bacillus thuringiensis in biocontrol: perspectives and limitations of current applications. Entomol Res 37(S1):A34–A35

    Google Scholar 

  • Cherif A, Rezgui W, Raddadi N, Daffonchio D, Boudabous A (2008) Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110. Microbiol Res 163:684–692

    CAS  Google Scholar 

  • Cutting SM (2010) Bacillus probiotics. Food Microbiol 28:214–220

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25:165–185

    CAS  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Nisin, a lantibiotic produced by Lactococcus lactis subsp lactis: properties, biosynthesis, fermentation and application. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Microbiology, genetics and applications. Chapman & Hall, London, pp 151–221

    Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quencing N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    CAS  Google Scholar 

  • EFSA (2004) Opinion of the scientific panel on additives and products or substances used in animal feed (FEEDAP) on the efficacy of product Toyocerin for pigs in fattening. EFSA J 62:1–5

    Google Scholar 

  • EFSA (2005) Scientific opinion of the panel on additives and products or substances used in animal feed (FEEDAP) on the modification of terms of authorisation of the microorganism preparation of Bacillus cereus var. toyoi (NCIMB 40112/CNCMI-1012) (Toyocerins) authorised as a feed additive in accordance with Directive 70/524/EEC. EFSA J 288:1–7

    Google Scholar 

  • EFSA (2007a) Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J 587:1–16

    Google Scholar 

  • EFSA (2007b) Scientific opinion of the panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of Toyocerins (Bacillus cereus var. toyoi) as feed additive for turkeys. EFSA J 549:1–11

    Google Scholar 

  • EFSA (2008) The maintenance of the list of QPS microorganisms intentionally added to foods or feeds. Scientific opinion of the panel on biological hazards. EFSA J 923:1–48

    Google Scholar 

  • Entian KD, Vos WM (1996) Genetics of subtilin and nisin biosyntheses of lantibiotics. Antonie Van Leeuwenhoek 69:109–117

    CAS  Google Scholar 

  • Espinasse S, Gohar M, Lereclus D, Sanchis V (2002) An ABC transporter from Bacillus thuringiensis is essential for beta-exotoxin I production. J Bacteriol 184:5848–5854

    CAS  Google Scholar 

  • Espinasse S, Gohar M, Lereclus D, Sanchis V (2004) An extracytoplasmic-function sigma factor is involved in a pathway controlling beta-exotoxin I production in Bacillus thuringiensis subsp. thuringiensis strain 407-1. J Bacteriol 186:3108–3116

    CAS  Google Scholar 

  • Ettoumi B, Raddadi N, Borin S, Daffonchio D, Boudabous A, Cherif A (2009) Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. J Basic Microbiol 49:1–11

    Google Scholar 

  • Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 53:206–216

    CAS  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    CAS  Google Scholar 

  • Franzetti A, Tamburini E, Banat IM (2010) Applications of biological surface active compounds in remediation technologies. Adv Exp Med Biol 672:121–134

    CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Google Scholar 

  • Granum PE (2007) Bacillus cereus. In: Doyle MP, Beuchat LR (eds) Food microbiology, fundamentals and frontiers, 3rd edn. ASM Press, Washington, pp 445–455

    Google Scholar 

  • Gross E, Kiltz HH, Nebelin E (1973) Subtilin, VI: structure of subtilin. Hoppe Seylers Z Physiol Chem 354:810–822

    CAS  Google Scholar 

  • Hamdache A, Lamarti A, Aleu J, Collado IG (2011) Non-peptide metabolites from the genus Bacillus. J Nat Prod 74:893–899

    CAS  Google Scholar 

  • Hansen BM, Handriksen NB (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol 67:185–189

    CAS  Google Scholar 

  • Hill C, Rea M, Ross P (2009) Thuricin CD, an antimicrobial for specifically targeting Clostridium difficile. Patent: WO 2009068656-A1 13 04-JUN-2009; TEAGASC, The Agriculture and Food Development Authority (IE), University College Cork-National University of Ireland, Cork (IE)

    Google Scholar 

  • Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW, Maiden MCJ, Priest FG, Barker M, Jiang L, Cer RZ, Rilstone J, Peterson SN, Weyant RS, Galloway DR, Rea TD, Popovic T, Fraser CM (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101:8449–8454

    CAS  Google Scholar 

  • Hong HA, Duc le H, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    CAS  Google Scholar 

  • Hyronimus B, Le Merrec C, Urdaci MC (1998) Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol 85:42–50

    CAS  Google Scholar 

  • Hyungjae L, Kim HY (2011) Lantibiotics, class I bacteriocins from the genus Bacillus. J Microbiol Biotechnol 21:229–235

    Google Scholar 

  • Jansen EF, Hirschmann DJ (1944) Subtilin, an antibacterial substance of Bacillus subtilis.: culturing conditions and properties. Arch Biochem 4:297–309

    CAS  Google Scholar 

  • Karlovsky P (2008) Secondary metabolites in soil ecology. Soil Biol 14:1–19

    CAS  Google Scholar 

  • Kelecom A (2002) Secondary metabolites from marine microorganisms. An Acad Bras Cienc 74:151–170

    CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–856

    CAS  Google Scholar 

  • Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596

    CAS  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316

    CAS  Google Scholar 

  • Korenblum E, Sebastián GV, Paiva MM, Coutinho CM, Magalhães FC, Peyton BM, Seldin L (2008) Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation. Appl Microbiol Biotechnol 79:97–103

    CAS  Google Scholar 

  • Kotze AC, O’Grady J, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol 35:1013–1022

    CAS  Google Scholar 

  • Lee H, Kim HY (2010) Lantibiotics, class I bacteriocins from the genus Bacillus. J Microbiol Biotechnol 21:229–235

    Google Scholar 

  • Lodemann U, Lorenz BM, Weyrauch KD, Martens H (2008) Effects of Bacillus cereus var. toyoi as probiotic feed supplement on intestinal transport and barrier function in piglets. Arch Anim Nutr 62:87–106

    CAS  Google Scholar 

  • Lund T, Granum PE (1997) Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 143:3329–3336

    CAS  Google Scholar 

  • Luthy P, Wolfersberger MG (2000) Pathogenisis of Bacillus thuringiensis toxins. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic, Dordrecht, pp 167–180

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    CAS  Google Scholar 

  • Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bactericins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    CAS  Google Scholar 

  • Nes IF, Yoon SS, Diep DB (2007) Ribosomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol 16:675–690

    CAS  Google Scholar 

  • Nicolas JP (2003) Molecular dynamics simulation of surfactin molecules at the water hexane interface. Biophys J 85:1377–1391

    CAS  Google Scholar 

  • Novotny JF, Perry JJ (1992) Characterization of bacteriocins from two strains of Bacillus thermoleovorans, a thermophilic hydrocarbon-utilizing species. Appl Environ Microbiol 58:2393–2396

    CAS  Google Scholar 

  • O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604

    Google Scholar 

  • Odunfa SA, Oyeyiola GF (1985) Microbiological study of the fermentation of ugba, a Nigerian indigenous fermented food flavour. J Plant Foods 6:155–163

    Google Scholar 

  • Oscariz JC, Lasa I, Pisabarro AG (1999) Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol Lett 178:337–341

    CAS  Google Scholar 

  • Oscariz JC, Pisabarro AG (2000) Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J Appl Microbiol 89:361–369

    CAS  Google Scholar 

  • Paik HD, Bae SS, Pan JG (1997) Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J Ind Microbiol Biotechnol 19:294–298

    CAS  Google Scholar 

  • Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B (2008) Molecular mechanism of target recognition by subtilin, a Class I lanthionine antibiotic. Antimicrob Agents Chemother 52:612–618

    CAS  Google Scholar 

  • Park RY, Choi MH, Sun HY, Shin SH (2005) Production of catechol-siderophore and utilization of transferrin-bound iron in Bacillus cereus. Biol Pharm Bull 28:1132–1135

    CAS  Google Scholar 

  • Pattnaik P, Kaushik JK, Grover S, Batish VK (2001) Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J Appl Microbiol 91:636–645

    CAS  Google Scholar 

  • Pedersen PB, Bjrnvad ME, Rasmussen MD, Petersen JN (2002) Cytotoxic potential of industrial strains of Bacillus sp. Regul Toxicol Pharm 36:155–161

    CAS  Google Scholar 

  • Perez-Garcia A, Romero D, Vicente A de (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    CAS  Google Scholar 

  • Pietra F (1997) Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Nat Prod Rep 14:453–464

    CAS  Google Scholar 

  • Porcar M, Juárez-Pérez V (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26:419–432

    CAS  Google Scholar 

  • Quadri LEN (2003) Regulation of class II bacteriocin production by cell-cell signaling. J Microbiol 41:175–182

    CAS  Google Scholar 

  • Raddadi N, Cherif A, Mora D, Ouzari H, Boudabous A, Molinari F, Daffonchio D (2004) The autolytic phenotype of Bacillus thuringiensis. J Appl Microbiol 97:158–168

    CAS  Google Scholar 

  • Raddadi N, Cherif A, Mora D, Brusetti L, Borin S, Boudabous A, Daffonchio D (2005) The autolytic phenotype of the Bacillus cereus group. J Appl Microbiol 99:1070–1081

    CAS  Google Scholar 

  • Raddadi N, Cherif A, Ouzari H, Marzorati M, Lorenzo Brusetti L, Boudabous A, Daffonchio D (2007) Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Ann Microbiol 57:481–494

    CAS  Google Scholar 

  • Raddadi N, Cherif A, Boudabous A, Daffonchio D (2008) Screening of plant growth promoting traits of Bacillus thuringiensis. Ann Microbiol 58:47–52

    CAS  Google Scholar 

  • Raddadi N, Belaouis A, Tamagnini I, Hansen BM, Hendriksen NB, Boudabous A, Cherif A, Daffonchio D (2009) Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. J Basic Microbiol 48:1–11

    Google Scholar 

  • Riley MA, Wertz J (2002) Bacteriocins: evolution, ecology and application. Annu Rev Microbiol 56:117–137

    CAS  Google Scholar 

  • Risøen PA, Rønning P, Hegna IK, Kolstø AB (2004) Characterization of a broad range antimicrobial substance from Bacillus cereus. J Appl Microbiol 96:648–655

    Google Scholar 

  • Rogers EW, Molinski TF (2009) Asymmetric synthesis of diastereomeric diaminoheptanetetraols. A proposal for the configuration of (+)-zwittermicin a. Org Lett 9:437–440

    Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je HE (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559

    CAS  Google Scholar 

  • Rude MA, Khosla C (2004) Engineered biosynthesis of polyketides in heterologous hosts. Chem Eng Sci 59:4693–4701

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hi CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    CAS  Google Scholar 

  • Sablon E, Contreras B, Vandamme E (2000) Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol 68:21–60

    CAS  Google Scholar 

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538

    CAS  Google Scholar 

  • Sass AM, Mckew BA, Sass H, Fichtel J, Timmis KN, Mcgenity TJ (2008) Diversity of Bacillus like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Syst 4(8):1–11

    Google Scholar 

  • Schaller KD, Fox SL, Bruhn DF, Noah KS, Bala GA (2004) Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery. Appl Biochem Biotechnol 113–116:827–836

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Schuller F, Benz R, Sahl HG (1989) The peptide antibiotic subtilin acts by formation of voltage-dependent multi-state pores in bacterial and artificial membranes. Eur J Biochem 182:181–186

    CAS  Google Scholar 

  • Schwart JL, Laprade R (2000) Membrane permeabilisation by Bacillus thuringiensis toxins: protein formation and pore insertion. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic Publishers, Dordrecht, pp 199–218

    Google Scholar 

  • Sen R (2010) Surfactin: biosynthesis, genetics and potential applications. Adv Exp Med Biol 672:316–323

    CAS  Google Scholar 

  • Sharma N, Attri A, Gautam N (2009a) Purification and characterization of bacteriocin like substance produced from Bacillus lentus with perspective of a new biopreservative for food preservation. Pak J Sci Ind Res 52:191–199

    CAS  Google Scholar 

  • Sharma N, Kapoor G, Gautam N, Neopaney B (2009b) Characterization of partially purified bacteriocin of Bacillus sp. MTCC 43 isolated from rhizosphere of radish (Raphanus sativus) and its application as a potential food biopreservative. J Sci Ind Res 68:881–886

    Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11

    CAS  Google Scholar 

  • Smith D, Lee KD, Gray E, Souleimanov A, Zhou X (2008) Use of bacteriocins for promoting plant growth and disease resistance. US Patent Application number: 20080248953

    Google Scholar 

  • Solaiman D (2005) Applications of microbial biosurfactants. Inform 16:408–410

    Google Scholar 

  • Stabb EV, Jacobson LM, Handelsman J (1994) Zwittermycin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412

    CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    CAS  Google Scholar 

  • Stein T, Borchert S, Kiesau P, Heinzmann S, Kloss S, Klein C, Helfrich M, Entian KD (2002) Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 44:403–416

    CAS  Google Scholar 

  • Stein T, Heinzmann S, Kiesau P, Himmel B, Entian KD (2003) The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 47:1627–1636

    CAS  Google Scholar 

  • Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    Google Scholar 

  • Sutyak KE, Anderson RA, Dover SE, Feathergill KA, Aroutcheva AA, Faro S, Chikindas ML (2008a) Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol 2008:540–758

    Google Scholar 

  • Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008b) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074

    CAS  Google Scholar 

  • Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in Gram-negative bacteria. Appl Environ Microbiol 75:567–572

    CAS  Google Scholar 

  • Terlabie NN, Sakyi-Dawson E, Amoa-Awua WK (2006) The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int J Food Microbiol 106:145–152

    CAS  Google Scholar 

  • Thomson JM, Bonomo RA (2005) The threat of antibiotic resistance in Gram-negative pathogenic bacteria: Betaβ-lactams in peril! Curr Opin Microbiol 8:518–524

    CAS  Google Scholar 

  • Turnbuell PC, Hutson RA, Ward MJ, Jones MN, Quinn CP, Finnie NJ, Duggleby SJ, Kramer JM, Melling J (1992) Bacillus anthracis but not always anthrax. J Appl Bacteriol 72:21–28

    Google Scholar 

  • Urdaci MC, Bressolier P, Pinchuk I (2004) Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J Clin Gastroenterol 38:S86–S90

    Google Scholar 

  • Von Tersch MA, Carlton BC (1983) Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol 155:872–877

    Google Scholar 

  • Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551

    CAS  Google Scholar 

  • Wang HL, Hesseltine CW (1982) Oriental fermented foods. In: Reed R (ed) Prescott and Dunn’s industrial microbiology. AVI Publishing Company, Hartford, pp 492–538

    Google Scholar 

  • Wang J, Fung DY (1996) Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit Rev Microbiol 22:101–138

    CAS  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100:2760–2765

    CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    CAS  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    CAS  Google Scholar 

  • Wulff EG, Mguni CM, Mansfeld-Giese K, Fels J, Luberck M, Hockenhull J (2002) Biochemical and molecular characterization of bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 51:574–584

    CAS  Google Scholar 

  • Xie J, Zhang R, Shang C, Guo Y (2009) Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr J Biotechnol 8:5611–5619

    Google Scholar 

  • Yamashita S, Akao T, Mizuki E, Saitoh H, Higuchi K, Park YS, Kim HS, Ohba M (2000) Characterization of the anticancer- cell parasporal proteins of a Bacillus thuringiensis isolate. Can J Microbiol 46:913–919

    CAS  Google Scholar 

  • Yang CY, Pang JC, Kao SS, Tsen HY (2003) Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J Agric Food Chem 51:100–105

    CAS  Google Scholar 

  • Yokotsuka T (1985) Fermented protein foods in the orient, with emphasis on shoyu and mMiso in Japan. In: Wood BJB (ed) Microbiology of fermented foods, vol 1. Elsevier, London, pp 263–293

    Google Scholar 

  • Zawadzka AM, Abergel RJ, Nichiporuk R, Andersen UN, Raymond KN (2009) Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48:3645–3657

    CAS  Google Scholar 

  • Zhang LH (2003) Quorum quenching and proactive host defense. Trends Plant Sci 8:238–244

    CAS  Google Scholar 

  • Zheng G, Slavik MF (1999) Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Microbiol 28:363–367

    CAS  Google Scholar 

  • Zhou Y, Choi YL, Sun M, Yu Z (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameur Cherif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chaabouni, I., Guesmi, A., Cherif, A. (2012). Secondary Metabolites of Bacillus: Potentials in Biotechnology. In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_18

Download citation

Publish with us

Policies and ethics