The Phosphatidylinositol 4-Kinases: Don’t Call it a Comeback

  • Shane MinogueEmail author
  • Mark G. Waugh
Part of the Subcellular Biochemistry book series (SCBI, volume 58)


Phosphatidylinositol 4-phosphate (PtdIns4P) is a quantitatively minor membrane phospholipid which is the precursor of PtdIns(4,5)P 2 in the classical agonist-regulated phospholipase C signalling pathway. However, PtdIns4P also governs the recruitment and function of numerous trafficking molecules, principally in the Golgi complex. The majority of phosphoinositides (PIs) phosphorylated at the D4 position of the inositol headgroup are derived from PtdIns4P and play roles in a diverse array of fundamental cellular processes including secretion, cell migration, apoptosis and mitogenesis; therefore, PtdIns4P biosynthesis can be regarded as key point of regulation in many PI-dependent processes.

Two structurally distinct sequence families, the type II and type III PtdIns 4-kinases, are responsible for PtdIns4P synthesis in eukaryotic organisms. These important proteins are differentially expressed, localised and regulated by distinct mechanisms, indicating that the enzymes perform non-redundant roles in trafficking and signalling. In recent years, major advances have been made in our understanding of PtdIns4K biology and here we summarise current knowledge of PtdIns4K structure, function and regulation.


Golgi complex Membrane traffic Phosphatidylinositol 4-phosphate Signalling 



We are grateful to Prof. Justin Hsuan, Dr. Emma Clayton and Dr. Emily Chu for comments on the manuscript. SM and MGW acknowledge the support of the BBSRC (award BB/G021163/1).


  1. Ahn J, Chung KS, Kim DU, Won M, Kim L, Kim KS, Nam M, Choi SJ, Kim HC, Yoon M, Chae SK, Hoe KL (2004) Systematic identification of hepatocellular proteins interacting with NS5A of the hepatitis C virus. J Biochem Mol Biol 37:741–748PubMedCrossRefGoogle Scholar
  2. Aikawa Y, Kuraoka A, Kondo H, Kawabuchi M, Watanabe T (1999) Involvement of PITPnm, a mammalian homologue of Drosophila rdgB, in phosphoinositide synthesis on Golgi membranes. J Biol Chem 274:20569–20577PubMedCrossRefGoogle Scholar
  3. Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11:2673–2689PubMedGoogle Scholar
  4. Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361PubMedCrossRefGoogle Scholar
  5. Balla A, Kim YJ, VarnaI P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008a) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol Biol Cell 19:711–721CrossRefGoogle Scholar
  6. Balla A, Tuymetova G, Barshishat M, Geiszt M, Balla T (2002) Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J Biol Chem 277:20041–20050PubMedCrossRefGoogle Scholar
  7. Balla A, Tuymetova G, Toth B, Szentpetery Z, Zhao X, Knight ZA, Shokat K, Steinbach PJ, Balla T (2008b) Design of drug-resistant alleles of type-III phosphatidylinositol 4-kinases using mutagenesis and molecular modeling. Biochemistry 47:1599–1607CrossRefGoogle Scholar
  8. Balla A, Tuymetova G, Tsiomenko A, Varnai P, Balla T (2005) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell 16:1282–1295PubMedCrossRefGoogle Scholar
  9. Balla A, Vereb G, Gulkan H, Gehrmann T, Gergely P, Heilmeyer LM, Jr., Antal M (2000a) Immunohistochemical localisation of two phosphatidylinositol 4-kinase isoforms, PI4K230 and PI4K92, in the central nervous system of rats. Exp Brain Res 134:279–288CrossRefGoogle Scholar
  10. Balla T, Bondeva T, Varnai P (2000b) How accurately can we image inositol lipids in living cells? Trends Pharmacol Sci 21:238–241CrossRefGoogle Scholar
  11. Balla T, Downing GJ, Jaffe H, Kim S, Zolyomi A, Catt KJ (1997) Isolation and molecular cloning of wortmannin-sensitive bovine type III phosphatidylinositol 4-kinases. J Biol Chem 272:18358–18366PubMedCrossRefGoogle Scholar
  12. Banerji S, Ngo M, Lane CF, Robinson CA, Minogue S, Ridgway ND (2010) Oxysterol binding protein (OSBP)-dependent activation of sphingomyelin synthesis in the golgi apparatus requires PtdIns 4-kinase IIα. Mol Biol Cell 21:4141–4150PubMedCrossRefGoogle Scholar
  13. Barylko B, Gerber SH, Binns DD, Grichine N, Khvotchev M, Sudhof TC, Albanesi JP (2001) A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J Biol Chem 276:7705–7708PubMedCrossRefGoogle Scholar
  14. Barylko B, Mao YS, Wlodarski P, Jung G, Binns DD, Sun HQ, Yin HL, Albanesi JP (2009) Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase IIα. J Biol Chem 284:9994–10003PubMedCrossRefGoogle Scholar
  15. Barylko B, Wlodarski P, Binns DD, Gerber SH, Earnest S, Sudhof TC, Grichine N, Albanesi JP (2002) Analysis of the catalytic domain of phosphatidylinositol 4-kinase type II. J Biol Chem 277:44366–44375PubMedCrossRefGoogle Scholar
  16. Berger KL, Cooper JD, Heaton NS, Yoon R, Oakland TE, Jordan TX, Mateu G, Grakoui A, Randall G (2009) Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc Natl Acad Sci U S A 106:7577–7582PubMedCrossRefGoogle Scholar
  17. Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem 276:11949–11955PubMedCrossRefGoogle Scholar
  18. Brill JA, Hime GR, Scharer-Schuksz M, Fuller MT (2000) A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis. Development 127:3855–3864PubMedGoogle Scholar
  19. Bruns JR, Ellis MA, Jeromin A, Weisz OA (2002) Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J Biol Chem 277:2012–2018PubMedCrossRefGoogle Scholar
  20. Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547PubMedCrossRefGoogle Scholar
  21. Chahdi A, Choi WS, Kim YM, Beaven MA (2003) Mastoparan selectively activates phospholipase D2 in cell membranes. J Biol Chem 278:12039–12045PubMedCrossRefGoogle Scholar
  22. Cochet C, Filhol O, Payrastre B, Hunter T, Gill GN (1991) Interaction between the epidermal growth factor receptor and phosphoinositide kinases. J Biol Chem 266:637–644PubMedGoogle Scholar
  23. Craige B, Salazar G, Faundez V (2008) Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic. Mol Biol Cell 19:1415–1426PubMedCrossRefGoogle Scholar
  24. D’angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, Van Der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, de Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67PubMedCrossRefGoogle Scholar
  25. De Barry J, Janoshazi A, Dupont JL, Procksch O, Chasserot-Golaz S, Jeromin A, Vitale N (2006) Functional implication of neuronal calcium sensor-1 and phosphoinositol 4-kinase-beta interaction in regulated exocytosis of PC12 cells. J Biol Chem 281:18098–18111PubMedCrossRefGoogle Scholar
  26. De Graaf P, Klapisz EE, Schulz TK, Cremers AF, Verkleij AJ, van Bergen en Henegouwen PM (2002) Nuclear localization of phosphatidylinositol 4-kinase beta. J Cell Sci 115:1769–1775PubMedGoogle Scholar
  27. De Graaf P, Zwart WT, van Dijken RA, Deneka M, Schulz TK, Geijsen N, Coffer PJ, Gadella BM, Verkleij AJ, Van Der Sluijs P, van Bergen En Henegouwen PM (2004) Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell 15:2038–2047PubMedCrossRefGoogle Scholar
  28. De Matteis MA, Di Campli A, D’angelo G (2007) Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochim Biophys Acta 1771:761–768Google Scholar
  29. Dumaresq-Doiron K, Savard MF, Akam S, Costantino S, Lefrancois S (2010) The phosphatidylinositol 4-kinase PI4KIIIalpha is required for the recruitment of GBF1 to Golgi membranes. J Cell Sci 123:2273–2280PubMedCrossRefGoogle Scholar
  30. Endemann G, Dunn SN, Cantley LC (1987) Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry 26:6845–6852PubMedCrossRefGoogle Scholar
  31. Flanagan CA, Schnieders EA, Emerick AW, Kunisawa R, Admon A, Thorner J (1993) Phosphatidylinositol 4-kinase: gene structure and requirement for yeast cell viability. Science 262:1444–1448PubMedCrossRefGoogle Scholar
  32. Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411PubMedGoogle Scholar
  33. Garcia-Bustos JF, Marini F, Stevenson I, Frei C, Hall MN (1994) PIK1, an essential phosphatidylinositol 4-kinase associated with the yeast nucleus. EMBO J 13:2352–2361PubMedGoogle Scholar
  34. Gehrmann T, Gulkan H, Suer S, Herberg FW, Balla A, Vereb G, Mayr GW, Heilmeyer LM Jr (1999) Functional expression and characterisation of a new human phosphatidylinositol 4-kinase PI4K230. Biochim Biophys Acta 1437:341–356PubMedCrossRefGoogle Scholar
  35. Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6:393–404PubMedCrossRefGoogle Scholar
  36. Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, de Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287PubMedCrossRefGoogle Scholar
  37. Gromada J, Bark C, Smidt K, Efanov AM, Janson J, Mandic SA, Webb DL, Zhang W, Meister B, Jeromin A, Berggren PO (2005) Neuronal calcium sensor-1 potentiates glucose-dependent exocytosis in pancreatic beta cells through activation of phosphatidylinositol 4-kinase beta. Proc Natl Acad Sci USA 102:10303–10308PubMedCrossRefGoogle Scholar
  38. Guo J, Wenk MR, Pellegrini L, Onofri F, Benfenati F, De Camilli P (2003) Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc Natl Acad Sci USA 100:3995–4000PubMedCrossRefGoogle Scholar
  39. Hammond GR, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G (2006) Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci 119:2084–2094PubMedCrossRefGoogle Scholar
  40. Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J 422:23–35PubMedCrossRefGoogle Scholar
  41. Han GS, Audhya A, Markley DJ, Emr SD, Carman GM (2002) The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity. J Biol Chem 277:47709–47718PubMedCrossRefGoogle Scholar
  42. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809PubMedCrossRefGoogle Scholar
  43. Harwood JL, Hawthorne JN (1969) The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissues. Biochim Biophys Acta 171:75–88PubMedCrossRefGoogle Scholar
  44. Haynes LP, Thomas GM, Burgoyne RD (2005) Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase beta and trans-Golgi network-plasma membrane traffic. J Biol Chem 280:6047–6054PubMedCrossRefGoogle Scholar
  45. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701PubMedCrossRefGoogle Scholar
  46. Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234–241PubMedCrossRefGoogle Scholar
  47. Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203:967–977PubMedGoogle Scholar
  48. Hunyady L, Balla T, Spat A (1983) Angiotensin II stimulates phosphatidylinositol turnover in adrenal glomerulosa cells by a calcium-independent mechanism. Biochim Biophys Acta 753:133–135PubMedCrossRefGoogle Scholar
  49. Jeganathan S, Lee JM (2007) Binding of elongation factor eEF1A2 to phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and phosphatidylinositol 4-phosphate generation. J Biol Chem 282:372–380PubMedCrossRefGoogle Scholar
  50. Jeganathan S, Morrow A, Amiri A, Lee JM (2008) Eukaryotic elongation factor 1A2 cooperates with phosphatidylinositol-4 kinase III beta to stimulate production of filopodia through increased phosphatidylinositol-4,5 bisphosphate generation. Mol Cell Biol 28:4549–4561PubMedCrossRefGoogle Scholar
  51. Jung G, Wang J, Wlodarski P, Barylko B, Binns DD, Shu H, Yin HL, Albanesi JP (2008) Molecular determinants of activation and membrane targeting of phosphoinositol 4-kinase IIbeta. Biochem J 409:501–509PubMedCrossRefGoogle Scholar
  52. Kakuk A, Friedlander E, Vereb G Jr, Kasa A, Balla A, Balla T, Heilmeyer LM Jr, Gergely P, Vereb G (2006) Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry A 69:1174–1183PubMedGoogle Scholar
  53. Kapp-Barnea Y, Ninio-Many L, Hirschberg K, Fukuda M, Jeromin A, Sagi-Eisenberg R (2006) Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta stimulate extracellular signal-regulated kinase 1/2 signaling by accelerating recycling through the endocytic recycling compartment. Mol Biol Cell 17:4130–4141PubMedCrossRefGoogle Scholar
  54. Kauffmann-Zeh A, Klinger R, Endemann G, Waterfield MD, Wetzker R, Hsuan JJ (1994) Regulation of human type II phosphatidylinositol kinase activity by epidermal growth factor-dependent phosphorylation and receptor association. J Biol Chem 269:31243–31251PubMedGoogle Scholar
  55. Kikuchi A, Yamamoto H, Sato A (2009) Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol 19:119–129PubMedCrossRefGoogle Scholar
  56. Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. Embo J 20:6347–6358PubMedCrossRefGoogle Scholar
  57. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747PubMedCrossRefGoogle Scholar
  58. Levine T, Rabouille C (2005) Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 17:362–368PubMedCrossRefGoogle Scholar
  59. Levine TP, Munro S (1998) The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr Biol 8:729–739PubMedCrossRefGoogle Scholar
  60. Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12:695–704PubMedCrossRefGoogle Scholar
  61. Liljedahl M, Maeda Y, Colanzi A, Ayala I, Van Lint J, Malhotra V (2001) Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104:409–420PubMedCrossRefGoogle Scholar
  62. Ma H, Blake T, Chitnis A, Liu P, Balla T (2009) Crucial role of phosphatidylinositol 4-kinase IIIalpha in development of zebrafish pectoral fin is linked to phosphoinositide 3-kinase and FGF signaling. J Cell Sci 122:4303–4310PubMedCrossRefGoogle Scholar
  63. Martone ME, Edelmann VM, Ellisman MH, Nef P (1999) Cellular and subcellular distribution of the calcium-binding protein NCS-1 in the central nervous system of the rat. Cell Tissue Res 295:395–407PubMedCrossRefGoogle Scholar
  64. Mazzocca A, Liotta F, Carloni V (2008) Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology 135:244–256 e1PubMedCrossRefGoogle Scholar
  65. Mcferran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273:22768–22772PubMedCrossRefGoogle Scholar
  66. Meyers R, Cantley LC (1997) Cloning and characterization of a wortmannin-sensitive human phosphatidylinositol 4-kinase. J Biol Chem 272:4384–4390PubMedCrossRefGoogle Scholar
  67. Michell RH, Harwood JL, Coleman R, Hawthorne JN (1967) Characteristics of rat liver phosphatidylinositol kinase and its presence in the plasma membrane. Biochim Biophys Acta 144:649–658PubMedCrossRefGoogle Scholar
  68. Minogue S, Anderson JS, Waugh MG, Dos Santos M, Corless S, Cramer R, Hsuan JJ (2001) Cloning of a human type II phosphatidylinositol 4-kinase reveals a novel lipid kinase family. J Biol Chem 276:16635–16640PubMedCrossRefGoogle Scholar
  69. Minogue S, Chu KM, Westover EJ, Covey DF, Hsuan JJ, Waugh MG (2010) Relationship between phosphatidylinositol 4-phosphate synthesis, membrane organization, and lateral diffusion of PI4KIIalpha at the trans-Golgi network. J Lipid Res 51:2314–2324PubMedCrossRefGoogle Scholar
  70. Minogue S, Waugh MG, de Matteis MA, Stephens DJ, Berditchevski F, Hsuan JJ (2006) Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. J Cell Sci 119:571–581PubMedCrossRefGoogle Scholar
  71. Nakagawa T, Goto K, Kondo H (1996) Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J Biol Chem 271:12088–12094PubMedCrossRefGoogle Scholar
  72. Nakanishi S, Catt KJ, Balla T (1995) A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci U S A 92:5317–5321PubMedCrossRefGoogle Scholar
  73. Nickels JT Jr, Buxeda RJ, Carman GM (1992) Purification, characterization, and kinetic analysis of a 55-kDa form of phosphatidylinositol 4-kinase from Saccharomyces cerevisiae. J Biol Chem 267:16297–16304PubMedGoogle Scholar
  74. Nishikawa K, Toker A, Wong K, Marignani PA, Johannes FJ, Cantley LC (1998) Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 273:23126–23133PubMedCrossRefGoogle Scholar
  75. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648PubMedCrossRefGoogle Scholar
  76. Olsson H, Martinez-Arias W, Jergil B (1993) Phosphatidylcholine enhances the activity of rat liver type II phosphatidylinositol-kinase. FEBS Lett 327:332–336PubMedCrossRefGoogle Scholar
  77. Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D (2008) Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 321:1350–1353PubMedCrossRefGoogle Scholar
  78. Pike LJ (1992) Phosphatidylinositol 4-kinases and the role of polyphosphoinositides in cellular regulation. Endocr Rev 13:692–706PubMedGoogle Scholar
  79. Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298–5308PubMedCrossRefGoogle Scholar
  80. Qin Y, Li L, Pan W, Wu D (2009) Regulation of phosphatidylinositol kinases and metabolism by Wnt3a and Dvl. J Biol Chem 284:22544–22548PubMedCrossRefGoogle Scholar
  81. Ridgway ND, Dawson PA, Ho YK, Brown MS, Goldstein JL (1992) Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol 116:307–319PubMedCrossRefGoogle Scholar
  82. Rohatgi R, Scott MP (2007) Patching the gaps in Hedgehog signalling. Nat Cell Biol 9:1005–1009PubMedCrossRefGoogle Scholar
  83. Roth AF, Wan J, Green WN, Yates JR, Davis NG (2006) Proteomic identification of palmitoylated proteins. Methods 40:135–142PubMedCrossRefGoogle Scholar
  84. Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V (2005) Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 16:3692–3704PubMedCrossRefGoogle Scholar
  85. Salazar G, Zlatic S, Craige B, Peden AA, Pohl J, Faundez V (2009) Hermansky-Pudlak syndrome protein complexes associate with phosphatidylinositol 4-kinase type II alpha in neuronal and non-neuronal cells. J Biol Chem 284:1790–1802PubMedCrossRefGoogle Scholar
  86. Simons JP, Al-Shawi R, Minogue S, Waugh MG, Wiedemann C, Evangelou S, Loesch A, Sihra TS, King R, Warner TT, Hsuan JJ (2009) Loss of phosphatidylinositol 4-kinase 2alpha activity causes late onset degeneration of spinal cord axons. Proc Natl Acad Sci U S A 106:11535–11539PubMedCrossRefGoogle Scholar
  87. Stevenson-Paulik J, Love J, Boss WF (2003) Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain. Plant Physiol 132:1053–1064PubMedCrossRefGoogle Scholar
  88. Stevenson JM, Perera IY, Boss WF (1998) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem 273:22761–22767PubMedCrossRefGoogle Scholar
  89. Strahl T, Hama H, Dewald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171:967–979PubMedCrossRefGoogle Scholar
  90. Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771:353–404PubMedCrossRefGoogle Scholar
  91. Szentpetery Z, Balla A, Kim YJ, Lemmon MA, Balla T (2009) Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol 10:67PubMedCrossRefGoogle Scholar
  92. Szentpetery Z, Varnai P, Balla T (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci USA 107:8225–8230PubMedCrossRefGoogle Scholar
  93. Taverna E, Francolini M, Jeromin A, Hilfiker S, Roder J, Rosa P (2002) Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. J Cell Sci 115:3909–3922PubMedCrossRefGoogle Scholar
  94. Toth B, Balla A, Ma H, Knight ZA, Shokat KM, Balla T (2006) Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi. J Biol Chem 281:36369–36377PubMedCrossRefGoogle Scholar
  95. Varnai P, Balla T (2006) Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim Biophys Acta 1761:957–967PubMedCrossRefGoogle Scholar
  96. Vieira OV, Verkade P, Manninen A, Simons K (2005) FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J Cell Biol 170:521–526PubMedCrossRefGoogle Scholar
  97. VIllen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104:1488–1493PubMedCrossRefGoogle Scholar
  98. Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H, Bonifacino JS, Yin HL (2007) PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell 18:2646–2655PubMedCrossRefGoogle Scholar
  99. Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299–310PubMedCrossRefGoogle Scholar
  100. Watt SA, Kular G, Fleming IN, Downes CP, Lucocq JM (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem J 363:657–666PubMedCrossRefGoogle Scholar
  101. Waugh MG, Minogue S, Anderson JS, Balinger A, Blumenkrantz D, Calnan DP, Cramer R, Hsuan JJ (2003a) Localization of a highly active pool of type II phosphatidylinositol 4-kinase in a p97/valosin-containing-protein-rich fraction of the endoplasmic reticulum. Biochem J 373:57–63CrossRefGoogle Scholar
  102. Waugh MG, Minogue S, Blumenkrantz D, Anderson JS, Hsuan JJ (2003b) Identification and characterization of differentially active pools of type IIalpha phosphatidylinositol 4-kinase activity in unstimulated A431 cells. Biochem J 376:497–503CrossRefGoogle Scholar
  103. Waugh MG, Minogue S, Chotai D, Berditchevski F, Hsuan JJ (2006) Lipid and peptide control of phosphatidylinositol 4-kinase IIalpha activity on Golgi-endosomal Rafts. J Biol Chem 281:3757–3763PubMedCrossRefGoogle Scholar
  104. Wei YJ, Sun HQ, Yamamoto M, Wlodarski P, Kunii K, Martinez M, Barylko B, Albanesi JP, Yin HL (2002) Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J Biol Chem 277:46586–46593PubMedCrossRefGoogle Scholar
  105. Weisz OA, Gibson GA, Leung SM, Roder J, Jeromin A (2000) Overexpression of frequenin, a modulator of phosphatidylinositol 4-kinase, inhibits biosynthetic delivery of an apical protein in polarized madin-darby canine kidney cells. J Biol Chem 275:24341–24347PubMedCrossRefGoogle Scholar
  106. Weixel KM, Blumental-Perry A, Watkins SC, Aridor M, Weisz OA (2005) Distinct Golgi populations of phosphatidylinositol 4-phosphate regulated by phosphatidylinositol 4-kinases. J Biol Chem 280:10501–10508PubMedCrossRefGoogle Scholar
  107. Whitman M, Kaplan D, Roberts T, Cantley L (1987) Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Implications for cellular regulation. Biochem J 247:165–174Google Scholar
  108. Wong K, Cantley LC (1994) Cloning and characterization of a human phosphatidylinositol 4-kinase. J Biol Chem 269:28878–28884PubMedGoogle Scholar
  109. Wong K, Meyers R, Cantley LC (1997) Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272:13236–13241PubMedCrossRefGoogle Scholar
  110. Yamakawa A, Nishizawa M, Fujiwara KT, Kawai S, Kawasaki H, Suzuki K, Takenawa T (1991) Molecular cloning and sequencing of cDNA encoding the phosphatidylinositol kinase from rat brain. J Biol Chem 266:17580–17583PubMedGoogle Scholar
  111. Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott MP, Banerjee U (2010)  Role of lipid metabolism in smoothened depression in hedgehog signaling. Dev Cell 19:54–65Google Scholar
  112. Yoshida S, Ohya Y, Goebl M, Nakano A, Anraku Y (1994) A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. J Biol Chem 269:1166–1172PubMedGoogle Scholar
  113. Zolyomi A, Zhao X, Downing GJ, Balla T (2000) Localization of two distinct type III phosphatidylinositol 4-kinase enzyme mRNAs in the rat. Am J Physiol Cell Physiol 278:C914–C920PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Centre for Molecular Cell Biology, Department of Inflammation, Division of MedicineUniversity College LondonLondonUnited Kingdom

Personalised recommendations