Peripheral Blood Monocytes Can Be Induced to Acquire Stem Cell-Like Properties

  • Hendrik Ungefroren
  • Ayman Hyder
  • Hebke Hinz
  • Norbert Reiling
  • Evelin Grage-Griebenow
  • Maren Schulze
  • Sabrina Ehnert
  • Andreas K. Nüssler
  • Fred Fändrich
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 6)


Adult stem or programmable cells hold great promise in diseases in which damaged or non-functional cells need to be replaced. We have recently demonstrated that peripheral blood monocytes can be differentiated in vitro into cells whose phenotypes resemble specialized cell types like hepatocytes and pancreatic beta cells. During phenotypic conversion the monocytes downregulate monocyte/macrophage differentiation markers being indicative of partial dedifferentiation and are partially reprogrammed to acquire a state of plasticity along with expression of various markers of pluripotency. These cells were termed “programmable cells of monocytic origin” (PCMOs). Current efforts focus on establishing culture conditions that increase both the plasticity and proliferation potential of PCMOs in order to be able to generate large amounts of blood-derived cells suitable for both autologous and allogeneic therapies.


Somatic Cell Nuclear Transfer Peripheral Blood Monocyte Autologous Serum Pluripotency Gene Stem Cell Renewal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alder JK, Georgantas RW III, Hildreth RL, Kaplan IM, Morisot S, Yu X, McDevitt M, Civin CI (2008) Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol 180:5645–5652PubMedGoogle Scholar
  2. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353PubMedCrossRefGoogle Scholar
  3. Chana G, Nogalskia M, Yurochko A (2009) Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. Proc Natl Acad Sci USA 106:22369–22374CrossRefGoogle Scholar
  4. Charriere GM, Cousin B, Arnaud E, Saillan-Barreau C, Andre M, Massoudi A, Dani C, Penicaud L, Casteilla L (2006) Macrophage characteristics of stem cells revealed by transcriptome profiling. Exp Cell Res 312:3205–3214PubMedCrossRefGoogle Scholar
  5. Ehnert S, Nussler AK, Lehmann A, Dooley S (2008) Blood monocyte-derived neohepatocytes as in vitro test system for drug metabolism. Drug Metab Dispos 36:1922–1929PubMedCrossRefGoogle Scholar
  6. Ehnert S, Seeliger C, Vester H, Schmitt A, Saidy-Rad S, Lin J, Neumaier M, Gillen S, Kleeff J, Friess H, Burkhart J, Stöckle U, Nussler AK (2011) Autologous serum improves yield and metabolic capacity of monocyte-derived hepatocyte-like cells: possible implication for cell transplantation. Cell Transplant 20:1465–1477PubMedCrossRefGoogle Scholar
  7. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8:188–194PubMedCrossRefGoogle Scholar
  8. Forsberg M, Carlén M, Meletis K, Yeung MS, Barnabé-Heider F, Persson MA, Aarum J, Frisén J (2010) Efficient reprogramming of adult neural stem cells to monocytes by ectopic expression of a single gene. Proc Natl Acad Sci USA 107:14657–14661PubMedCrossRefGoogle Scholar
  9. Glanemann M, Gaebelein G, Nussler N, Hao L, Kronbach Z, Shi B, Neuhaus P, Nussler AK (2009) Transplantation of monocyte-derived hepatocyte-like cells (NeoHeps) improves survival in a model of acute liver failure. Ann Surg 249:149–154PubMedCrossRefGoogle Scholar
  10. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964PubMedCrossRefGoogle Scholar
  11. Hutchinson JA, Riquelme P, Wundt J, Hengstler JG, Fändrich F, Ungefroren H, Clement B (2007) Could treatment with neohepatocytes benefit patients with decompensated chronic liver disease? Am J Hematol 82:947–948PubMedCrossRefGoogle Scholar
  12. Hutchinson JA, Riquelme P, Geissler EK, Fändrich F (2011) Human regulatory macrophages. Methods Mol Biol 677:181–192PubMedCrossRefGoogle Scholar
  13. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74PubMedCrossRefGoogle Scholar
  14. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74:833–845PubMedCrossRefGoogle Scholar
  15. Lamba D, Modjtahedi H, Plan N, Ferns G (2004) EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques. Atherosclerosis 176:21–26CrossRefGoogle Scholar
  16. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55PubMedCrossRefGoogle Scholar
  17. Nolan T, Girolamo N, Goroneo M, Wakefield D (2004) Proliferative effects of heparin-binding epidermal growth factor-like growth factor on pterygium epithelial cells and fibroblasts. Invest Ophthalmol Vis Sci 45:110–113PubMedCrossRefGoogle Scholar
  18. Pufe T, Petersen W, Fändrich F, Varoga D, Wruck CJ, Mentlein R, Helfenstein A, Hoseas D, Dressel S, Tillmann B, Ruhnke M (2008) Programmable cells of monocytic origin (PCMO): a source of peripheral blood stem cells that generate collagen type II-producing chondrocytes. J Orthop Res 26:304–313PubMedCrossRefGoogle Scholar
  19. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S (2005) CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 97:314–322PubMedCrossRefGoogle Scholar
  20. Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, Klapper W, Ulrichs K, Hutchinson JA, Soria B, Parwaresch RM, Heeckt P, Kremer B, Fändrich F (2005a) Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 128:1774–1786PubMedCrossRefGoogle Scholar
  21. Ruhnke M, Nussler AK, Ungefroren H, Hengstler JG, Kremer B, Hoeckh W, Gottwald T, Heeckt P, Fändrich F (2005b) Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy. Transplantation 79:1097–1103PubMedCrossRefGoogle Scholar
  22. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411PubMedCrossRefGoogle Scholar
  23. Schiff B, McMurphy A, Jasser S, Younes M, Doan D, Yigitbasi O, Kim S, Zhou G, Mandal M, Bekele B, Holsinger F, Sherman S, Yeung S, El-Naggar A, Myers J (2004) Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor Gefitinib inhibits the growth of anaplastic thyroid cancer. Clin Cancer Res 10:8594–8602PubMedCrossRefGoogle Scholar
  24. Schulze M, Fändrich F, Ungefroren H, Kremer B (2005) Adult stem cells – perspectives in treatment of metabolic diseases. Acta Gastroenterol Belg 68:461–465PubMedGoogle Scholar
  25. Seta N, Kuwana M (2010) Derivation of multipotent progenitors from human circulating CD14+ monocytes. Exp Hematol 38:557–563PubMedCrossRefGoogle Scholar
  26. Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86:1105–1109PubMedCrossRefGoogle Scholar
  27. Ungefroren H, Fändrich F (2010) The programmable cell of monocytic origin (PCMO): a potential adult stem/progenitor cell source for the generation of islet cells. Adv Exp Med Biol 654:667–682Google Scholar
  28. Ungefroren H, Groth S, Hyder A, Thomsen N, Hinz H, Reiling N, Grage-Griebenow E, Held-Feindt J, Schulze M, Nüssler AK, Fändrich F (2010) The generation of programmable cells of monocytic origin involves partial repression of monocyte/macrophage markers and reactivation of pluripotency genes. Stem Cells Dev 19:1769–1780Google Scholar
  29. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648PubMedCrossRefGoogle Scholar
  30. Yan L, Han Y, Wang J, Liu J, Hong L, Fan D (2007) Peripheral blood monocytes from patients with HBV related decompensated liver cirrhosis can differentiate into functional hepatocytes. Am J Hematol 82:949–954PubMedCrossRefGoogle Scholar
  31. Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100:2426–2431PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hendrik Ungefroren
    • 1
  • Ayman Hyder
    • 2
  • Hebke Hinz
    • 2
  • Norbert Reiling
    • 3
  • Evelin Grage-Griebenow
    • 4
  • Maren Schulze
    • 5
  • Sabrina Ehnert
    • 6
  • Andreas K. Nüssler
    • 6
  • Fred Fändrich
    • 2
  1. 1.Abtlg. Hämatologie/OnkologieMedizinische Klinik I –ZKLübeckGermany
  2. 2.Department of Applied Cellular MedicineUniversity Hospital Schleswig-HolsteinKielGermany
  3. 3.Division of Microbial Interface Biology, Research Center BorstelLeibniz Center for Medicine and BiosciencesBorstelGermany
  4. 4.Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & HepatologyUniversity Hospital Schleswig HolsteinKielGermany
  5. 5.Clinic for General and Thoracic SurgeryUniversity Hospital Schleswig-HolsteinKielGermany
  6. 6.BG Trauma ClinicEberhard-Karls UniversityTübingenGermany

Personalised recommendations