Advertisement

Mouse Bone Marrow Derived Mesenchymal Stem Cells

  • Sara Strecker
  • Yaling Liu
  • Liping Wang
  • David Rowe
  • Peter Maye
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 6)

Abstract

There is a general belief that adult stem cells are an essential aspect of maintaining tissue health as we age and undergo wound healing, but the mechanisms by which adult stem cells contribute to these processes are poorly understood. One of the more highly investigated adult stem cell populations has been the bone marrow derived mesenchymal stem cell (BMSC). The rare presence of BMSCs within the bone marrow has made it a challenge to understand how this adult stem cell population naturally functions in vivo. While human BMSC research has direct therapeutic application, we believe murine animal models have an important role to play in understanding mechanisms of BMSC biology that are likely to influence how BMSCs are therapeutically used. In this chapter, we discuss the current beliefs in the field with regard to the therapeutic benefit of BMSCs and how we define BMSCs. We also include detailed information on mouse BMSCs and methods that we have developed over the past few years to isolate, identify, and work with mouse BMSCs.

Keywords

Alcian Blue Conical Tube Bone Marrow Derive Mesenchymal Stem Cell Digestion Solution Human BMSCs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218(2):237–245PubMedCrossRefGoogle Scholar
  2. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89(6):1235–1249PubMedCrossRefGoogle Scholar
  3. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H et al (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6(3):423–435PubMedCrossRefGoogle Scholar
  4. Caterson EJ, Nesti LJ, Danielson KG, Tuan RS (2002) Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation. Mol Biotechnol 20(3):245–256PubMedCrossRefGoogle Scholar
  5. D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39(3):513–522PubMedCrossRefGoogle Scholar
  6. Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82PubMedCrossRefGoogle Scholar
  7. Dexter TM, Simmons P, Purnell RA, Spooncer E, Schofield R (1984) The regulation of hemopoietic cell development by the stromal cell environment and diffusible regulatory molecules. Prog Clin Biol Res 148:13–33PubMedGoogle Scholar
  8. Friedenstein AJ, Shapiro Piatetzky II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMedGoogle Scholar
  9. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403PubMedGoogle Scholar
  10. Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84(12):4164–4173PubMedGoogle Scholar
  11. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835PubMedCrossRefGoogle Scholar
  12. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49PubMedCrossRefGoogle Scholar
  13. Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, Aguila HL, Rowe DW, Kalajzic I (2008) Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone 43(3):501–510PubMedCrossRefGoogle Scholar
  14. Keilhoff G, Goihl A, Langnase K, Fansa H, Wolf G (2006) Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 85(1):11–24PubMedCrossRefGoogle Scholar
  15. Krampera M, Marconi S, Pasini A, Galie M, Rigotti G, Mosna F, Tinelli M et al (2007) Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 40(2):382–390PubMedCrossRefGoogle Scholar
  16. Kronenberg HM (2004) Twist genes regulate Runx2 and bone formation. Dev Cell 6(3):317–318PubMedCrossRefGoogle Scholar
  17. Liu Y, Wang L, Fatahi R, Kronenberg M, Kalajzic I, Rowe D, Li Y, Maye P (2010) Isolation of murine bone marrow derived mesenchymal stem cells using Twist2 Cre transgenic mice. Bone 47(5):916–925PubMedCrossRefGoogle Scholar
  18. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140PubMedCrossRefGoogle Scholar
  19. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834PubMedCrossRefGoogle Scholar
  20. Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28(3–4):147–155PubMedCrossRefGoogle Scholar
  21. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399PubMedCrossRefGoogle Scholar
  22. Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72(4):570–585PubMedCrossRefGoogle Scholar
  23. Phinney DG, Hill K, Michelson C, DuTreil M, Hughes C, Humphries S, Wilkinson R, Baddoo M, Bayly E (2006) Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells 24(1):186–198PubMedCrossRefGoogle Scholar
  24. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  25. Prockop DJ (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 82(3):241–243PubMedCrossRefGoogle Scholar
  26. Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17(6):939–946PubMedCrossRefGoogle Scholar
  27. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedCrossRefGoogle Scholar
  28. Tatard VM, D’Ippolito G, Diabira S, Valeyev A, Hackman J, McCarthy M, Bouckenooghe T, Menei P, Montero-Menei CN, Schiller PC (2007) Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons. Bone 40(2):360–373PubMedCrossRefGoogle Scholar
  29. Tohill M, Mantovani C, Wiberg M, Terenghi G (2004) Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett 362(3):200–203PubMedCrossRefGoogle Scholar
  30. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379PubMedCrossRefGoogle Scholar
  31. Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS (2003) Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21(6):681–693PubMedCrossRefGoogle Scholar
  32. Wislet-Gendebien S, Leprince P, Moonen G, Rogister B (2003) Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci 116(Pt 16):3295–3302PubMedCrossRefGoogle Scholar
  33. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sara Strecker
    • 1
  • Yaling Liu
    • 1
  • Liping Wang
    • 1
  • David Rowe
    • 1
  • Peter Maye
    • 1
  1. 1.Department of Reconstructive Sciences, School of Dental Medicine, Academic Research Building, L7007, MC3705University of Connecticut Health CenterFarmingtonUSA

Personalised recommendations