Differences Between Germ-Line Stem Cells and Multipotent Adult Germ-Line Stem Cells for MicroRNAs

  • Mukesh Kumar Gupta
  • Hoon Taek Lee
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 6)


Testes-derived male germ-line stem cells exhibit spermatogenic potential or multipotency depending on the culture conditions used for their isolation and in vitro maintenance. While unipotent male germ-line stem (GS) cells has the potential to repopulate the empty seminiferous tubules of infertile males, multipotent adult germ-line stem (maGS) cells have the ability to differentiate into cells of all three germ layers for their application in regenerative medicine. Unfortunately, co-existence of both types of stem cells in a cell population may limit their bio-medical, clinical and research application. In particular, testicular transplantation of GS cells with contaminating maGS cells may result in teratoma formation. Recent studies have revealed that endogenous small non-coding microRNA (miRNA) play important roles in the conversion of GS cells into maGS cells and may form a miRNA signature that may be used as a molecular tool to distinguish the GS cells from maGS cells. This chapter describes the biogenesis and functions of miRNAs in the context of testes-derived male germ-line stem cells and discusses their potential application in distinguishing the unipotent GS cells from the multipotent maGS cells.


Embryonic Stem Cell miRNA Gene Mouse Testis Male Germ Cell Round Spermatid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U, Gilad S, Hurban P, Karov Y, Lobenhofer EK, Sharon E, Shiboleth YM, Shtutman M, Bentwich Z, Einat P (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14:2486–2494PubMedCrossRefGoogle Scholar
  2. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217PubMedCrossRefGoogle Scholar
  3. Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP (2010) Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 16:720–731PubMedCrossRefGoogle Scholar
  4. Buchold GM, Coarfa C, Kim J, Milosavljevic A, Gunaratne PH, Matzuk MM (2010) Analysis of microRNA expression in the prepubertal testis. PLoS One 5:e15317PubMedCrossRefGoogle Scholar
  5. Gonzalez-Gonzalez E, Lopez-Casas PP, del Mazo J (2008) The expression patterns of genes involved in the RNAi pathways are tissue-dependent and differ in the germ and somatic cells of mouse testis. Biochim Biophys Acta 1779:306–311PubMedGoogle Scholar
  6. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203PubMedCrossRefGoogle Scholar
  7. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978PubMedCrossRefGoogle Scholar
  8. Hayashi K, de Sousa C, Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3:e1738PubMedCrossRefGoogle Scholar
  9. Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, Wu TJ, Wu YC, Hung YC, Chang CC, Ling TY (2009) Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. FASEB J 23:2076–2087PubMedCrossRefGoogle Scholar
  10. Jung YH, Gupta MK, Oh SH, Uhm SJ, Lee HT (2010a) Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells. Exp Cell Res 316:747–761PubMedCrossRefGoogle Scholar
  11. Jung YH, Gupta MK, Shin JY, Uhm SJ, Lee HT (2010b) MicroRNA signature in testes-derived male germ-line stem cells. Mol Hum Reprod 16:804–810PubMedCrossRefGoogle Scholar
  12. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012PubMedCrossRefGoogle Scholar
  13. Kleene KC (2003) Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res 103:217–224PubMedCrossRefGoogle Scholar
  14. Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271PubMedCrossRefGoogle Scholar
  15. Ko K, Tapia N, Wu G, Kim JB, Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdorfer K, Sebastiano V, Stehling M, Fleischmann BK, Brustle O, Zenke M, Scholer HR (2009) Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5:87–96PubMedCrossRefGoogle Scholar
  16. Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P (2006) The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103:2647–2652PubMedCrossRefGoogle Scholar
  17. Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F (2010) Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 5:e11744PubMedCrossRefGoogle Scholar
  18. Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79:696–703PubMedCrossRefGoogle Scholar
  19. Oh SH, Jung YH, Gupta MK, Uhm SJ, Lee HT (2009) H19 gene is epigenetically stable in mouse multipotent germline stem cells. Mol Cells 27:635–640PubMedCrossRefGoogle Scholar
  20. Ro S, Park C, Sanders KM, McCarrey JR, Yan W (2007a) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 311:592–602PubMedCrossRefGoogle Scholar
  21. Ro S, Park C, Young D, Sanders KM, Yan W (2007b) Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35:5944–5953PubMedCrossRefGoogle Scholar
  22. Shin JY, Gupta MK, Jung YH, Uhm SJ, Lee HT (2011) Differential genomic imprinting and expression of imprinted microRNAs in testes-derived male germ-line stem cells in mouse. PLoS One 6(7):e22481PubMedCrossRefGoogle Scholar
  23. Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 41:488–493PubMedCrossRefGoogle Scholar
  24. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181PubMedCrossRefGoogle Scholar
  25. Tong MH, Mitchell D, Evanoff R, Griswold MD (2011) Expression of mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 85(1):189–197PubMedCrossRefGoogle Scholar
  26. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886PubMedCrossRefGoogle Scholar
  27. Wang PJ, McCarrey JR, Yang F, Page DC (2001) An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27:422–426PubMedCrossRefGoogle Scholar
  28. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743PubMedCrossRefGoogle Scholar
  29. Yan N, Lu Y, Sun H, Tao D, Zhang S, Liu W, Ma Y (2007) A microarray for microRNA profiling in mouse testis tissues. Reproduction 134:73–79PubMedCrossRefGoogle Scholar
  30. Yan N, Lu Y, Sun H, Qiu W, Tao D, Liu Y, Chen H, Yang Y, Zhang S, Li X, Ma Y (2009) Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet 26:179–186PubMedCrossRefGoogle Scholar
  31. Yu Z, Hecht NB (2008) The DNA/RNA-binding protein, translin, binds microRNA122a and increases its in vivo stability. J Androl 29:572–579PubMedCrossRefGoogle Scholar
  32. Yu Z, Raabe T, Hecht NB (2005) MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 73:427–433PubMedCrossRefGoogle Scholar
  33. Zheng K, Wu X, Kaestner KH, Wang PJ (2009) The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 9:38PubMedCrossRefGoogle Scholar
  34. Zovoilis A, Nolte J, Drusenheimer N, Zechner U, Hada H, Guan K, Hasenfuss G, Nayernia K, Engel W (2008) Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles. Mol Hum Reprod 14:521–529PubMedCrossRefGoogle Scholar
  35. Zovoilis A, Pantazi A, Smorag L, Opitz L, Riester GS, Wolf M, Zechner U, Holubowska A, Stewart CL, Engel W (2010) Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent cells originating from the germ line. Mol Hum Reprod 16:793–803PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Animal BiotechnologyKonkuk UniversitySeoulSouth Korea

Personalised recommendations