Simulation of Potential Yields of New Rice Varieties in the Senegal River Valley

  • Michiel E. de Vries
  • Abdoulaye Sow
  • Vincent B. Bado
  • Nomé Sakane
Chapter

Abstract

Irrigated rice in the Sahel has a high yield potential, due to favorable climatic conditions. Simulation models are excellent tools to predict the potential yield of rice varieties under known climatic conditions. This study aimed to (1) evaluate new rice genotypes for the Sahel, and (2) calibrate simulation models to predict potential yield of irrigated rice in the Sahel. Two new inbred lines (ITA344 and IR32307) and one O. sativa × O. glaberrima line (WAS 161-B-9-2) were tested against IR64, an international check, and Sahel 108, locally the most popular rice cultivar. Field experiments were executed at two sites along the Senegal river, Ndiaye and Fanaye, differing in temperature regime and soil type. All cultivars were sown and transplanted at two sowing dates in February and March 2006. Observed grain yields varied from 7 to 10 t ha−1 and from 6 to 12 t ha−1 at Ndiaye and Fanaye, respectively. The number of days until maturity ranged from 119 to 158, depending on cultivar, sowing date and site. Experimental data of one sowing date was used to calibrate both the DSSAT and ORYZA2000 models. According to ORYZA2000, the same cultivars needed 400°Cd more in Fanaye than in Ndiaye to complete their cycle. ORYZA2000 simulated phenology well, but yield was underestimated. After calibrating DSSAT, different sets of genetic coefficients gave similar results. Genetic coefficients that reflected the observed phenology well resulted in lower than observed yields. Crop growth simulation is a powerful tool to predict yields, but local calibration at the same sowing date is needed to obtain useful results.

Keywords

Oryza sativa Crop growth simulation models Irrigated rice Sahel 

Notes

Acknowledgement

The authors are grateful to the Dutch Directorate General for International Cooperation (DGIS) of the Dutch government and Africa Rice Centre for funding this research.

References

  1. Arora VK (2006) Application of a rice growth and water balance model in an irrigated semi-arid subtropical environment. Agric Water Manag 83:51–57CrossRefGoogle Scholar
  2. Bado BV, De Vries ME, Haefele S, Wopereis MCS, N’diaye MK (2008) Critical limit of extractable phosphorous in a gleysol for rice production in the Senegal river valley of West Africa. Commun Soil Sci Plant Anal 39:202–206CrossRefGoogle Scholar
  3. Belder P, Bouman BAM, Spiertz JHJ (2007) Exploring options for water savings in lowland rice using a modelling approach. Agric Sys 92:91–114CrossRefGoogle Scholar
  4. Boling AA, Bouman BAM, Tuong TP, Murty MVR, Jatmiko SY (2007) Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in Central Java, Indonesia. Agric Sys 92:115–139CrossRefGoogle Scholar
  5. Boling AA, Tuong TP, van Keulen H, Bouman BAM, Suganda H, Spiertz JHJ (2010) Yield gap of rainfed rice in farmers’ fields in Central Java, Indonesia. Agric Sys 103:307–315CrossRefGoogle Scholar
  6. Boling AA, BoumanBAM, TuongTP, KonboonY, Harnpichitvitaya D (2011) Yield gap analysis and the effect of nitrogen and water on photoperiod-sensitive jasmine rice in north-east Thailand NJAS – Wageningen. J Life Sci 58:11–19Google Scholar
  7. Boote KJ, Hunt LA (1998) Data for model operation, calibration, and evaluation. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer Academic, Dordrecht, pp 9–39Google Scholar
  8. Bouman BAM, van Laar HH (2006) Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric Sys 87:249–273CrossRefGoogle Scholar
  9. Bouman BAM, Kropff MJ, Tuong TP, Wopereis MCS, ten Berge HFM, van Laar HH (2001) Oryza2000: modeling lowland rice. International Rice Research Institute, Los BanosGoogle Scholar
  10. De Vries ME, Rodenburg J, Bado BV, Sow A, Leffelaar PA, Giller KE (2010) Rice production with less irrigation water is possible in a Sahelian environment field. Crop Res 116:154–164CrossRefGoogle Scholar
  11. De Vries ME, Leffelaar PA, Sakané N, Bado BV, Giller KE (2011) Adaptability of irrigated rice to temperature change in Sahelian environments. Exp Agric 47:69–87CrossRefGoogle Scholar
  12. Dingkuhn M, Sow A (1997) Potential yields of irrigated rice in the Sahel. In: Miézan KM et al (eds) Irrigated rice in the Sahel: prospects for sustainable development. WARDA, Bouaké, Côte d’Ivoire, pp 361–379Google Scholar
  13. Dingkuhn M, Le GalMPY, Poussin JC (1995a) RIDEV: un modèle de développement du riz pour le choix des variétés et des calendriers. In: Boivin P et al (eds) Nianga, laboratoire de l’agriculture irriguée en moyenne vallée du Sénégal ORSTOM, Atelier ORSTOM-ISRA, Saint-Louis, Senegal, pp 205–222Google Scholar
  14. Dingkuhn M, Sow A, Samb A, Diack S, Asch F (1995b) Climatic determinants of irrigated rice performance in the Sahel – I. Photothermal and micro-climatic responses of flowering. Agric Sys 48:385–410CrossRefGoogle Scholar
  15. Feng L, Bouman BAM, Tuong TP, Cabangon RJ, Li Y, Lu G, Feng Y (2007) Exploring options to grow rice using less water in northern China using a modelling approach: I field experiments and model evaluation. Agric Water Manag 88:1–13CrossRefGoogle Scholar
  16. Heuer S, Miezan KM, Sie M, Gaye S (2003) Increasing biodiversity of irrigated rice in Africa by interspecific crossing of Oryza glaberrima (Steud.) x O. sativa indica (L.). Euphytica 132:31–40CrossRefGoogle Scholar
  17. Jing Q, Bouman BAM, van Keulen H, Hengsdijk H, Cao W, Dai T (2008) Disentangling the effect of environmental factors in yield and nitrogen uptake of irrigated rice in Asia. Agric Sys 98:177–188CrossRefGoogle Scholar
  18. Jones MP, Dingkuhn M, Aluko GK, Semon M (1997) Interspecific Oryza sativa L. x O. Glaberrima Steud. progenies in upland rice improvement. Euphytica 94:237–246CrossRefGoogle Scholar
  19. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265CrossRefGoogle Scholar
  20. Kebbeh M, Miezan KM (2003) Ex-ante evaluation of integrated crop management options for irrigated rice production in the Senegal river valley. Field Crop Res 81:87–94CrossRefGoogle Scholar
  21. Kropff MJ, van Laar HH, Mattews RB (1994) ORYZA1: an ecophysiological model for irrigated rice production. DLO-Staring Centrum, Instituut voor Onderzoek van het Landelijk Gebied (SC-DLO), WageningenGoogle Scholar
  22. Matthews RB, Kropff MJ, Horie T, Bachelet D (1997) Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric Sys 54:399–425CrossRefGoogle Scholar
  23. Pathak H, Timsina J, Humphreys E, Godwin DC, Bijay-Singh V, Shukla AK, Singh U, Matthews RB (2004) Simulation of rice crop performance and water and N dynamics, and methane emissions for rice in northwest India using CERES rice model. CSIRO Land and Water, GriffithGoogle Scholar
  24. Poussin JC, Wopereis MCS, Debouzie D, Maeght JL (2003) Determinants of irrigated rice yield in the Senegal river valley. Eur J Agron 19:341–356CrossRefGoogle Scholar
  25. Saito K, Azoma K, Sie M (2010) Grain yield performance of selected lowland NERICA and modern Asian rice genotypes in West Africa. Crop Sci 50:281–291CrossRefGoogle Scholar
  26. Sarkar R, Kar S (2006) Evaluation of management strategies for sustainable rice-wheat cropping systems, using DSSAT seasonal analysis. J Agric Sci 144:421–434CrossRefGoogle Scholar
  27. Saseendran SA, Singh KK, Rathore LS, Rao GSLHVP, Mendiratta N, Narayan KL, Singh SV (1998) Evaluation of the CERES-rice version 3.0 model for the climate conditions of the state of Kerala, India. Meteorol Appl 5:385–392CrossRefGoogle Scholar
  28. Segda Z, Haefele SM, Wopereis MCS, Sedogo MP, Guinko S (2005) Combining field and simulation studies to improve fertilizer recommendations for irrigated rice in Burkina Faso. Agron J 97:1429–1437CrossRefGoogle Scholar
  29. Sheehy JE, Mitchell PL, Ferrer AB (2006) Decline in rice grain yields with temperature: models and correlations can give different estimates. Field Crop Res 98:151–156CrossRefGoogle Scholar
  30. Sie M, Kabore KB, Dakou D, Dembele Y, Segda Z, Bado BV, Ouedraogo M, Thio B, Ouedraogo I, Moukoumbi YD, Ba NM, Traore A, Sanou I, Ogunbayo SA, Toulou B (2007) Release of four new interspecific varieties for the rainfed lowland in Burkina Faso. Int Rice Res Notes 32:16–17Google Scholar
  31. Ten Berge HFM, Thiyagarajan TM, Wopereis MCS, Drenth H, Jansen MJW (1997) Numerical optimization of nitrogen application to rice. Part I. Description of MANAGE-N. Field Crop Res 51:29–42CrossRefGoogle Scholar
  32. Timsina J, Humphreys E (2003) Performance and application of CERES and WAGMAN destiny models for rice-wheat cropping systems in Asia and Australia: a review 16/03. CSIRO land and water, Griffith, AustraliaGoogle Scholar
  33. Timsina J, Humphreys E (2006a) Performance of CERES-rice and CERES-wheat models in rice-wheat systems: a review. Agric Sys 90:5–31CrossRefGoogle Scholar
  34. Timsina J, Humphreys E (2006b) Applications of CERES-rice and CERES-wheat in research, policy and climate change studies in Asia: a review. Int J Agric Res 1:202–225CrossRefGoogle Scholar
  35. Van Kraalingen DWG, Rappoldt C, van Laar HH (2003) The Fortran simulation translator, a simulation language. Eur J Agron 18:359–361CrossRefGoogle Scholar
  36. Vandersypen K, Keita ACT, Kaloga K, Coulibaly Y, Raes D, Jamin JY (2006) Sustainability of farmers’ organization of water management in the office du Niger irrigation scheme in Mali. Irrig Drain 55:51–60CrossRefGoogle Scholar
  37. WARDA ARC (2006) Annual report 2005–2006: providing what’s needed, Cotonou, BeninGoogle Scholar
  38. Wopereis MCS, Bouman BAM, Kropff MJ, Berge HFMt, Maligaya AR (1994) Water use efficiency of flooded rice fields I. Validation of the soil-water balance model SAWAH. Agric Water Manag 26:277–289CrossRefGoogle Scholar
  39. Xiong W, Holman I, Conway D, Lin E, Li Y (2008) A crop model cross calibration for use in regional climate impacts studies. Ecol Model 213:365–380CrossRefGoogle Scholar
  40. Xiong W, Conway D, Lin E, Holman I (2009) Potential impacts of climate change and climate variability on China’s rice yield and production. Clim Res 40:23–35CrossRefGoogle Scholar
  41. Yin X (1996) Rice flowering in response to diurnal temperature amplitude. Field Crop Res 48:1–9CrossRefGoogle Scholar
  42. Yin X, Kropff MJ, Horie T, Nakagawa H, Centeno HS, Zhu D, Goudriaan J (1997) A model for photothermal responses of flowering in rice. I. Model description and parameterization. Field Crop Res 51:189–200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Michiel E. de Vries
    • 1
    • 2
  • Abdoulaye Sow
    • 1
  • Vincent B. Bado
    • 1
  • Nomé Sakane
    • 1
    • 2
  1. 1.Sahel stationAfrica Rice CenterSt. LouisSenegal
  2. 2.Plant Production SystemsWageningen UniversityWageningenthe Netherlands

Personalised recommendations