Energy Sources for, and Detectability of, Life on Extrasolar Planets

  • John A. Raven
  • Charles S. Cockell
  • Lisa Kaltenegger
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 22)


Life in the accessible biosphere on Earth today is energised in primary productivity mainly by solar radiation through photolithotrophy with a minor role for chemolithotrophy based on reductants from hydrothermal vents and volcanoes, as well as reductant from photolithotrophy (Johnston et al., 2009; Raven, 2009a). Food webs downstream of primary producers involve chemo-organotrophs which regenerate chemical resources for photolithotrophy and chemolithotrophy. In addition to these energy sources for growth and maintenance, there are also a range of other potential energy sources for growth and maintenance of organisms (Muller and Schulze-Makuch, 2006), with varying extents of experimental support for their occurrence. The analysis of these alternative energy sources involves not only the likelihood of their occurrence when the energy source is available but also the availability of these energy sources on Earth. These analyses permit estimates of how globally significant the alternative energy sources could be. In the context of astrobiology, we review and extend previous attempts to quantify the possible extent of photolithotrophy and chemolithotrophy, and of the alternative energy sources, as well as the possibilities of remote sensing of these processes on Earth.


Hydrothermal Vent Sulphide Oxidation Alternative Energy Source Oxygenic Photosynthesis Extrasolar Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The University of Dundee is a registered Scottish Charity, No. SC 010596.

L. Kaltenegger acknowledges the support of the Harvard Origins of Life Initiative and the NASA Astrobiology Institute.


  1. Arnold L, Gillet S, Lardière O, Riaud P, Schroeder J (2002) A test for the search for life on extrasolar planets. Astron Astrophys 352:231–237CrossRefGoogle Scholar
  2. Bjorn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009) Why chlorophyll a? Photosynth Res 99:85–98PubMedCrossRefGoogle Scholar
  3. Brack A (1993) Liquid water and the origin of life. Orig Life Evol Biosph 23:3–10PubMedCrossRefGoogle Scholar
  4. Brüchert V, Curie B, Beard KR (2009) Hydrogen sulphide and methane emission of the central Namibian shelf. Prog Oceanogr 83:169–178CrossRefGoogle Scholar
  5. Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc Lond B Biol Sci 363:2731–2743PubMedCrossRefGoogle Scholar
  6. Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc Lond B Biol Sci 361:1819–1836PubMedCrossRefGoogle Scholar
  7. Chapelle FH, O’Neill K, Bradley M, Methé BA, Ciufo SA, Knobel LL, Lowley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315PubMedCrossRefGoogle Scholar
  8. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, SeSantis TZ, Gihring TM, Lapidus A, Lin LH, Moser DP, Richardson PM, Sotham G, Wanger G, Pratt LM, Anderson GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep with earth. Science 322:275–278PubMedCrossRefGoogle Scholar
  9. Christensen PR, Pearl JC (1997) Initial data from the mars global surveyor thermal emission spectrometer experiment: observations of the earth. J Geophys Res 102:10875–10880CrossRefGoogle Scholar
  10. Cockell CS, Lee M (2002) Interstellar predation. J Br Interplanet Soc 55:8–29Google Scholar
  11. Cockell CS, Raven JA (2004) Zones of photosynthetic potential on mars and the early earth. Icarus 169:300–310CrossRefGoogle Scholar
  12. Cockell CS, Kaltenegger L, Raven JA (2009a) Cryptic photosynthesis – extrasolar planetary oxygen without a surface biotic signature. Astrobiology 9:623–626PubMedCrossRefGoogle Scholar
  13. Cockell CS, Raven JA, Kaltenegger L, Logan RC (2009b) Planetary targets in the search for extrasolar oxygenic photosynthesis. Plant Ecol Divers 2:207–219CrossRefGoogle Scholar
  14. Cockell CS, Léger A, Fridlund M, Herbst TM, Kaltengger L, Absil C, Beichman C, Benz W, Blanc M, Brack A, Chelli A, Colangeli L, Cottin H, Coudé de Foresto F, Danchi WC, Desfrère D, den Herder J-W, Eiroa C, Greaves J, Henning T, Johnston KC, Jones H, Labardie L, Lammer H, Launhardt R, Lawson P, Lay OP, LeDuigou J-M, Liseau R, Malbet F, Martin SR, Mawet D, Mourard D, Moutou C, Mugnier LM, Ollivier M, Paresce F, Quirrenbach A, Rabbia YD, Raven JA, Rottgering HJA, Rouan D, Santos NC, Selsis F, Serabyn A, Shibai H, Tamura M, Thiébaut E, Westal F, White GJ (2009c) Darwin – a mission to detect and search for life on extrasolar planets. Astrobiology 9:1–22PubMedCrossRefGoogle Scholar
  15. Cowan NB, Agol E, Meadows VS, Robinson T, Livengood TA, Deming D, Lisse CM, A’Hearn MF, Wellnitz DD, Seager S, Charbonneau D, the EPICA Team (2010) Alien maps of an ocean-bearing world. Astrophys J 700:915–923Google Scholar
  16. Davies PCW, Benner SA, Cleland CE, Lineweaver CH, McKay CP, Wolfe-Simon F (2009) Signatures of a shadow biosphere. Astrobiology 9:241–249PubMedCrossRefGoogle Scholar
  17. Des Marais DJ, Harwit MO, Jucks KW, Kasting JF, Lin DNC, Lunine JI, Schneider J, Seager S, Traub WA, Woolf NJ (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181PubMedCrossRefGoogle Scholar
  18. Finster KW, Cockell CS, Voytek MA, Gronstal AL, Kjedsen KJ (2009) Description of Tetratococcus profundi sp. nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill (940 m depth). Antonie von Leuwenhoek 96:515–526CrossRefGoogle Scholar
  19. Fisk MR, Giovannoni SJ (1999) Sources of nutrients and energy for a deep biosphere on mars. J Geophys Res Planets 104:11805–11815CrossRefGoogle Scholar
  20. Ford E, Seager S, Turner EL (2001) Characterization of extrasolar terrestrial planets from diurnal photometric variability. Nature 412:885–887PubMedCrossRefGoogle Scholar
  21. Gensel PG (2008) The earliest land plants. Annu Rev Ecol Evol Syst 39:439–477CrossRefGoogle Scholar
  22. Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049PubMedCrossRefGoogle Scholar
  23. Gómez-Consanau L, Akram N, Lindell K, Petersen A, Neutze R, Milton DL, González JM, Pinhoussi J (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:e1000358CrossRefGoogle Scholar
  24. Jiao N, Zhan Y, Zeng Y, Hong N, Liu R, Chen F, Wang P (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic bacteria in the global ocean. Env Microbiol 9:3091–3099CrossRefGoogle Scholar
  25. Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH (2009) Anoxygenic photosynthesis modulated proterozoic oxygen and sustained earth’s middle age. Proc Natl Acad Sci USA 106:16925–16929PubMedCrossRefGoogle Scholar
  26. Jørgensen BB, D’Hondt S (2006) A starving majority deep beneath the seafloor. Science 314:932–934PubMedCrossRefGoogle Scholar
  27. Kaltenegger L (2010) Characterizing habitable exo-moons. Astrophys J 711:L1–L6CrossRefGoogle Scholar
  28. Kaltenegger L, Sasselov D (2010) Detecting planetary geochemical cycles in exoplanets: atmospheric signatures and the case of SO2. Astrophys J 708:1162–1167CrossRefGoogle Scholar
  29. Kaltenegger L, Traub W (2009) Transits of earth-like planets. Astrophys J 698:519–527CrossRefGoogle Scholar
  30. Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an earth-like planet. Astrophys J 658:598–616CrossRefGoogle Scholar
  31. Kaltenegger L, Selsis F, Fridlund M, Lammer H, Beichman C, Danchi W, Lvoa C, Henning T, Herbst T, Léger A, Liseau R, Lurine J, Paresce F, Penny A, Quirrenbach A, Röttgering H, Schneider J, Stam D, Tinetti G, White GD (2010) Characterization of terrestrial exoplanets and detection of biomarkers. Astrobiology 10:89–102PubMedCrossRefGoogle Scholar
  32. Kaufmann M (2009) On the free energy that drove primordial anabolism. Int J Mol Sci 10:1853–1871PubMedCrossRefGoogle Scholar
  33. Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light-strategies in marine phytoplankton. Environ Microbiol 12:95–104PubMedCrossRefGoogle Scholar
  34. Kharecha P, Kasting J, Siefert J (2005) A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3:53–76CrossRefGoogle Scholar
  35. Kiang NY, Siefert J, Govindjee, Blankenship RE (2007a) Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7:222–251PubMedCrossRefGoogle Scholar
  36. Kiang NY, Segura A, Tinetti G, Govindjee, Blankenship RE, Cohern M, Siefert J, Crisp D, Meadows VS (2007b) Spectral signatures of photosynthesis. Astrobiology 7:252–274PubMedCrossRefGoogle Scholar
  37. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 30:271–280CrossRefGoogle Scholar
  38. Lavik G, Stührman T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Muβmann M, Fuchs BM, Amann R, Lass U, Kuypers MMM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–584PubMedCrossRefGoogle Scholar
  39. Lin L-H, Slater GF, Lolar BS, Lacrampe-Coulume G, Onstott TC (2004) The yield and isotopic composition of radiolytic energy source for the deep subsurface biosphere. Geochim Cosmichim Acta 69:893–903CrossRefGoogle Scholar
  40. Lovelock JE (1975) Thermodynamics and the recognition of alien biospheres. Proc R Soc Lond B Biol Sci 189:167–180CrossRefGoogle Scholar
  41. Miller SD, Haddock SHD, Elvidge SV, Lee TF (2005) Detection of a bioluminescent milky sea from space. Proc Natl Acad Sci USA 102:14181–14184PubMedCrossRefGoogle Scholar
  42. Milo R (2009) What governs that reaction center excitation wavelength of photosystems I and II? Photosynth Res 101:59–67PubMedCrossRefGoogle Scholar
  43. Montañés-Rodriguez P, Pallé E, Goode PR, Hickey J, Koonin SE (2005) Globally integrated measurements of the earth’s visible spectral albedo. Astrophys J 629:1175–1182CrossRefGoogle Scholar
  44. Montañés-Rodriguez P, Palle E, Goode PR (2007) Measurements of the surface brightness of the earthshine with applications to calibrate lunar flashes. Astronom J 134:1145–1149CrossRefGoogle Scholar
  45. Muller AWJ, Schulze-Makuch D (2006) Thermal energy and the origin of life. Orig Life Evol Biosph 36:177–189PubMedCrossRefGoogle Scholar
  46. Munz FW, McFarland WN (1973) The significance of spectral position in the rhodopsins of tropical marine fish. Vision Res 13:1829–1874PubMedCrossRefGoogle Scholar
  47. Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic Press, London, pp. xviii + 297Google Scholar
  48. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulphur bacterium from the Black Sea. Limnol Oceanogr 37:150–155CrossRefGoogle Scholar
  49. Owen T (1980) The search for early forms of life in other planetary systems - future possibilities afforded by spectroscopic techniques. In: Papagiannis MD (ed) Strategies for the search of life in the universe. Reidel, Dordrecht, pp 177–185CrossRefGoogle Scholar
  50. Pallé E, Ford EB, Seager S, Montañés-Rodríguez P, Vazquez M (2008) Identifying the rotation rate and the presence of dynamic weather on extrasolar earth-like planets from photometric observations. Astrophys J 676:1319–1329CrossRefGoogle Scholar
  51. Pallé E, Zapatero Osorio MR, Barrena R, Montañés-Rodríguez P, Martín EL (2009) Earth’s transmission spectrum from lunar eclipse observations. Nature 459:814–816PubMedCrossRefGoogle Scholar
  52. Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R, Greenhouse R (2000) Greenhouse warming by CH4 in the atmosphere of early earth. J Geophys Res 105:981–992CrossRefGoogle Scholar
  53. Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich proterozoic atmosphere? Geology 31:87–92CrossRefGoogle Scholar
  54. Purohit AN, Nautiyal AR, Taylor P (2008) Leaf optical properties of an alpine perennial herb Sedum vaginatum Clarke grown at two altitudes. Biol Plant 30:373–378CrossRefGoogle Scholar
  55. Raven JA (1984) A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytol 98:593–625CrossRefGoogle Scholar
  56. Raven JA (1988) Algae on the move. Bot J Scotl 36:505–515Google Scholar
  57. Raven JA (2009a) Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aqu Microb Ecol 56:177–192CrossRefGoogle Scholar
  58. Raven JA (2009b) Functional evolution of photochemical energy transformation in oxygen-producing organisms. Funct Plant Biol 36:505–515CrossRefGoogle Scholar
  59. Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104PubMedCrossRefGoogle Scholar
  60. Raven JA, Cockell CS (2006) Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe). Astrobiology 6:668–675PubMedCrossRefGoogle Scholar
  61. Raven JA, Wolstencroft RD (2004) Constraints on photosynthesis in earth and earth-like planets. In: Norris RP, Stootman FH (eds) Bioastronomy 2002, life among the stars. International astronomical union symposium 213. Astronomical Society of the Pacific, San Francisco, pp 305–308Google Scholar
  62. Raven JA, Kübler JE, Beardall J (2000) Put out the light, and then put out the light. J Mar Biol Assoc UK 80:1–25CrossRefGoogle Scholar
  63. Rubinstein CV, Gevienne P, de la Puente GS, Actini RA, Steeman P (2010) Early middle Ordovician evidence for land plants in Argentina (Eastern Antarctica). New Phytol 188:365–369PubMedCrossRefGoogle Scholar
  64. Sabeh G, Kirkup BC, Rosenberg M, Stambler N, Polz NF, Béjà O (2007) Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern marine proteorhodopsin for the eastern Mediterranean and the Sargasso Sea. ISME J 1:48–55CrossRefGoogle Scholar
  65. Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB (1999) Dense populations of giant sulphur bacteria in Namibian shelf sediments. Science 284:493–495PubMedCrossRefGoogle Scholar
  66. Schulze-Makuch D, Irwin LN (2002) Energy cycling and hypothetic organisms in Europa’s ocean. Astrobiology 2:105–121PubMedCrossRefGoogle Scholar
  67. Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390PubMedCrossRefGoogle Scholar
  68. Sleep NH, Bird DK (2008) Evolutionary ecology during the rise of dioxygen in the earth’s earliest biosphere. Philos Trans R Soc Lond B Biol Sci 363:2651–2664PubMedCrossRefGoogle Scholar
  69. Stomp M, Huisman J, Stal LJ, Matthijs HCP (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of water molecules. ISME J 1:271–282PubMedGoogle Scholar
  70. Tett P (1990) The photic zone. In: Herring PJ, Campbell K, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  71. Tomescu AMF, Pratt LM, Rothwell GW, Strother PK, Nadon GC (2009) Carbon isotopes support the presence of extensive land floras pre-dating the origin of vascular plants. Palaeogeogr Palaeoclimatol Palaeoecol 283:45–59CrossRefGoogle Scholar
  72. Tsong TY, Kingsley E (1975) Hemolysis of human erythrocyte induced by a rapid temperature jump. J Biol Chem 256:786–789Google Scholar
  73. Turnbull MC, Traub WA, Jucks KW, Woolf NJ, Meyer MR, Gorlova N, Skrutskie MF, Wilson JC (2006) Spectrum of a habitable world: earthshine in the near-infrared. Astrophys J 644:551–559CrossRefGoogle Scholar
  74. Weeks SJ, Currie B, Bakun A (2002) Massive emissions of toxic gases in the Atlantic. Nature 415:493–494PubMedCrossRefGoogle Scholar
  75. William DM, Gaidos E (2008) Detecting the glint of starlight on the oceans of distant planets. Icarus 195(2):927–937CrossRefGoogle Scholar
  76. Wolstencroft RD, Raven JA (2002) Photosynthesis: likelihood of occurrence and possibility of detection of earth-like planets. Icarus 17:535–548CrossRefGoogle Scholar
  77. Woolf NJ, Smith PS, Traub WA, Jucks KW (2002) The spectrum of earthshine: a pale blue dot observed from the ground. Astrophys J 574:430–442CrossRefGoogle Scholar
  78. Zubkov MV (2009) Photoheterotrophy in marine prokaryotes. J Plankt Res 31:935–958CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • John A. Raven
    • 1
  • Charles S. Cockell
    • 2
    • 3
  • Lisa Kaltenegger
    • 4
    • 5
  1. 1.Division of Plant SciencesUniversity of Dundee at TJHI, The James Hutton InstituteInvergowrie, DundeeUK
  2. 2.Centre for Earth, Planetary and Space ResearchOpen UniversityWalton Hall, Milton KeynesUK
  3. 3.School of Physics and Astronomy, James Clerk Maxwell BuildingUniversity of EdinburghMayfield Road, EdinburghUK
  4. 4.Astronomy DepartmentHarvard UniversityCambridgeUSA
  5. 5.MPIAHeidelbergGermany

Personalised recommendations