Advertisement

Recurrent Dreams of Life in Meteorites

  • Richard GordonEmail author
  • Jesse C. Mcnichol
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 22)

Abstract

The debate on life in meteorites has entered its eighth episode, with recurrent themes and arguments. We suggest: (1) that deliberate contamination of meteorite specimens be used as a control; (2) that exploration of the solar system proceed apace to obtain pristine samples and check them for life, under stringent isolating conditions that provably avoid contamination of control specimens; and (3) that the combination of macromolecular with inorganic material in carbonaceous chondrites be explored as a possible cause for some of the organized elements and as a possible early step towards protocells in the origin of life.

Keywords

Carbonaceous Chondrite Terrestrial Organism Organize Element Lunar Sample Martian Meteorite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We would like to thank Cheryl Buors, Neil John Maclean Health Sciences Library, University of Manitoba, for a tremendous job in collecting archaic references.

References

  1. Abyzov SS, Imshenetskii AA (1965) A technique and some results of meteorite microbiological investigations. Life Sci Space Res 3:155–164PubMedGoogle Scholar
  2. Alexander CMO, Russell SS, Arden JW, Ash RD, Grady MM, Pillinger CT (1998) The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study. Meteoritics Planet Sci 33(4):603–622Google Scholar
  3. Alpern B, Benkheiri Y (1973) Distribution de la matière organique dans la météorite d’Orgueil par microscopie en fluorescence [Distribution of organic matter in the Orgueil meteorite by fluorescent microscopy]. Earth Planet Sci Lett 19(4):422–428Google Scholar
  4. Ameen AP, Short RD, Douglas CWI, Johns R, Ballet B (1996) A critical investigation of some of the procedures employed in the surgical use of titanium. J Mater Sci Mater Med 7(4):195–199Google Scholar
  5. Anders E (1962) Meteoritic hydrocarbons and extraterrestrial life. Ann N Y Acad Sci 93(14):651–657PubMedGoogle Scholar
  6. Anders E (1963) On the origin of carbonaceous chondrites. Ann N Y Acad Sci 108(2):514–533PubMedGoogle Scholar
  7. Anders E (1991) Organic matter in meteorites and comets: possible origins. Space Sci Rev 56(1–2):157–166Google Scholar
  8. Anders E, Fitch FW (1962) Search for organized elements in carbonaceous chondrites. Science 138(3548):1392–1399PubMedGoogle Scholar
  9. Anders E, Fitch FW (1963) Erratum: Search for organized elements in carbonaceous chondrites. Science 139(3550):99Google Scholar
  10. Anders E, DuFresne ER, Hayatsu R, DuFresne A, Cavaillé A, Fitch FW (1964) Contaminated meteorite. Science 146(3648):1157–1161PubMedGoogle Scholar
  11. Anonymous (1882) Fossils in meteors. The Midland Naturalist 5:92Google Scholar
  12. Anonymous (1962) Life-forms in meteorites. Curr Sci 31(6):226Google Scholar
  13. Anonymous (1965) Life-forms in meteorites and the problem of terrestrial contamination: a study in methodology – Tasch, P. Psychiatr Q 39(2):382Google Scholar
  14. Anonymous (2011) NASA shoots down alien fossil claims. http://www.abc.net.au/news/stories/2011/03/08/3157645.htm. Accessed 26 June 2011
  15. Arrhenius SA (1908) Worlds in the making; the evolution of the universe. Harper, New YorkGoogle Scholar
  16. Arrhenius S (1909) The life of the universe as conceived by man from the earliest ages to the present time, vol 1, 2. Harper & Brothers, New YorkGoogle Scholar
  17. Badylak SF, Wu CC, Bible M, McPherson E (2003) Host protection against deliberate bacterial contamination of an extracellular matrix bioscaffold versus DacronTM mesh in a dog model of orthopedic soft tissue repair. J Biomed Mater Res Part B 67B(1):648–654Google Scholar
  18. Bairyev C, Mamedov S (1962) CEДБI ЖИЗHИ BКAMHЯX ИЗB CEЛEHHO [Traces of life in rocks from outer space]. Pravda (June 25):6Google Scholar
  19. Baker BL (1971) Review of organic matter in the Orgueil meteorite. Space Life Sciences 2(4):472–497Google Scholar
  20. Bandurski EL, Nagy B (1976) The polymer-like organic material in the Orgueil meteorite. Geochim Cosmochim Acta 40(11):1397–1406Google Scholar
  21. Barghoorn ES, Phillpott D, Turnbill C (1970) Micropaleontological study of lunar. Science 167(3918):775PubMedGoogle Scholar
  22. Bauman AJ, Devaney JR, Bollin EM (1973) Allende meteorite carbonaceous phase: intractable nature and scanning electron morphology. Nature 241(5387):264–267Google Scholar
  23. Becquerel P (1924) La Vie Terrestre Provient-Elle d’un Autre Monde? [Does life on earth come from another world?]. L’Astronomie 38:393–417Google Scholar
  24. Benzerara K, Chapon V, Moreira D, López-García P, Guyot F, Heulin T (2006) Microbial diversity on the Tatahouine meteorite. Meteoritics Planet Sci 41(8):1249–1265Google Scholar
  25. Bernal JD (1961) Significance of carbonaceous meteorites in theories on the origin of life. Nature 190(4771):129–131Google Scholar
  26. Bernal JD (1962) Comments. Nature 193(4821):1127–1129Google Scholar
  27. Bernal JD (1965) Essay review. In: Middlehurst BM, Kuiper GP (eds) The solar system, vol IV, The Moon, Meteorites and Comets. Sci Prog 53(209):143–146Google Scholar
  28. Berthelot P (1868) Cosmologie. – Sur la matiére charbonneuse des météorites. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 67:849Google Scholar
  29. Berthelot P (1869) Ueber die kohlige Substanz der Meteoriten. J Prakt Chem 106:254Google Scholar
  30. Binet L, Gourier D, Derenne S, Robert F, Ciofini I (2004) Occurence of abundant diradicaloid moieties in the insoluble organic matter from the Orgueil and Murchison meteorites: A fingerprint of its extraterrestrial origin? Geochim Cosmochim Acta 68(4):881–891Google Scholar
  31. Bitz SM, Nagy B (1966) Ozonolysis of “polymer-type” material in coal, kerogen and in the Orgueil meteorite: a preliminary report. Proc Natl Acad Sci USA 56(5):1383–1390PubMedGoogle Scholar
  32. Bland PA, Howard KT, Cressey G, Benedix CK (2008) The terrestrial component of primitive chondrite alteration. Meteoritics Planet Sci 43(S7):A26Google Scholar
  33. Bland PA, Jackson MD, Coker RF, Cohen BA, Webber JBW, Lee MR, Duffy CM, Chater RJ, Ardakani MG, McPhail DS, McComb DW, Benedix GK (2009) Why aqueous alteration in asteroids was isochemical: High porosity not equal high permeability. Earth Planet Sci Lett 287(3–4):559–568Google Scholar
  34. Boato G (1954) The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochim Cosmochim Acta 6(5–6):209–220Google Scholar
  35. Botan EA (1965) Examination of “organized elements” from the Orgueil meteorite by quantitative fluorescence microscopy. Aerospace Med 36(11):1069–1076PubMedGoogle Scholar
  36. Botan EA (1966) Biotic signatures. Ann N Y Acad Sci 140(A1):307–313Google Scholar
  37. Boyle A (2011) Life in meteorites? Study stirs debate. http://cosmiclog.msnbc.msn.com/_news/2011/03/05/6198177-life-in-meteorites-study-stirs-debate. Accessed 26 June 2011
  38. Brandenburg JE (2011) Second Copernican revolution. The CI and ALH84001 are linked by isotopes and chemistry. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#123
  39. Brasier MD (2011) Life in CI1 carbonaceous chondrites? J Cosmol 13(March): http://journalofcosmology.com/Life101.html#109
  40. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF (2006) Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng 12(10):2949–2955PubMedGoogle Scholar
  41. Briggs MH (1960) The origins of life on the earth: a review of the experimental evidence. Sci Cult 26:160–170Google Scholar
  42. Briggs MH (1962a) The nature and origin of meteorite organic matter. Sci Cult 28(8):357–360Google Scholar
  43. Briggs MH (1962b) Properties of organic microstructures of some carbonaceous chondrites. Nature 195(4846):1076–1077Google Scholar
  44. Briggs MH (1963a) Biological problems of meteorites. Tuatara J Biol Soc 11(1):1–16Google Scholar
  45. Briggs MH (1963b) Organic extracts of some carbonaceous meteorites. Life Sci 1:63–68Google Scholar
  46. Briggs MH, Kitto GB (1962) Complex organic micro-structures in the Mokoia meteorite. Nature 193(4821):1126–1127Google Scholar
  47. Briggs MH, Mamikunian G (1963) Organic constituents of the carbonaceous chondrites. Space Sci Rev 1(4):647–682Google Scholar
  48. Briggs MH, Mamikunian G (1965) Trends and problems in exobiology. In: Mamikunian G, Briggs MH (eds) Current aspects of exobiology. Pergamon Press, New York, pp 347–358Google Scholar
  49. Brooks J (1981) Organic matter in meteorites and precambrian rocks: clues about the origin and development of living systems [and discussion]. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 303(1480):595–609Google Scholar
  50. Brooks J, Muir MD (1971) Morphology and chemistry of the organic insoluble matter from the Onverwacht Series Precambrian chert and the Orgueil and Murray carbonaceous meteorites. Grana 11(1):9–14Google Scholar
  51. Brooks J, Shaw G (1969) Evidence for extraterrestrial life: identity of sporopollenin with the insoluble organic matter present in the Orgueil and Murray meteorites and also in some terrestrial microfossils. Nature 223(5207):754–756Google Scholar
  52. Burke JG (1986) Cosmic debris: meteorites in history. University of California Press, BerkeleyGoogle Scholar
  53. Burke V, Wiley AJ (1937) Bacteria in coal. J Bacteriol 34(5):483–488Google Scholar
  54. Buseck PR, Hua X (1993) Matrices of carbonaceous chondrite meteorites. Annual Rev Earth Planet Sci 21:255–305Google Scholar
  55. Campbell SE (1979) Soil stabilization by a prokaryotic desert crust: implications for precambrian land biota. Orig Life Evol Biosph 9(4):335–348Google Scholar
  56. Campbell MR, Schulze-Makuch D (2010) Classics in space medicine: BOTAN EA. Examination of “organized elements” from the Orgueil meteorite by quantitative fluorescence microscopy. Aerosp Med 1965; 36:1069–76. Aviation Space Environ Med 81(7):700–701Google Scholar
  57. Choi JS, Chung YH, Moon YJ, Kim C, Watanabe M, Song PS, Joe CO, Bogorad L, Park YM (1999) Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol 70(1):95–102Google Scholar
  58. Chyba CF, McDonald GD (1995) The origin of life in the solar system: current issues. Annual Rev Earth Planet Sci 23:215–249Google Scholar
  59. Claus P (1968) Studies on terrestrial contaminants of meteorites. Ann N Y Acad Sci 147(9):365–409PubMedGoogle Scholar
  60. Claus G, Madri PP (1972) Studies of terrestrial contaminants in meteorites: Part II Bacteriology of meteorites. Ann N Y Acad Sci 196(9):387–407Google Scholar
  61. Claus G, Nagy B (1961) A microbiological examination of some carbonaceous chondrites. Nature 192(480):594–596Google Scholar
  62. Claus G, Nagy B (1962a) Microfossils, new to science, resembling algae and flagellates, found in meteorites. Pollen et Spores 4(2):339Google Scholar
  63. Claus G, Nagy B (1962b) Taxonomical consideration of certain Incerta Sedes. Phycol Soc Am News Bull 15(1):15–19Google Scholar
  64. Claus G, Nagy B (1963) Discussion de la note de Georges Deflandre sur la présence supposée de micro-organismes d’origine extra-terrestre dans des météorites [Discussion of the note of Georges Deflandre. “Criticisms on the supposed presence of microorganisms extraterrestrial in origin in meteorites]. Rev Agol 6(4):319–323Google Scholar
  65. Claus G, Suba-C EA (1964) Organized element distribution in relation to size in the Orgueil meteorite. Nature 204(495):118–120Google Scholar
  66. Claus G, Suba-C EA (1965) Interpretation of micro-structures in carbonaceous meteorites. Nature 205(4977):1201Google Scholar
  67. Claus G, Nagy B, Europa DL (1963) Further observations on the properties of the “organized elements” in carbonaceous chondrites. Ann N Y Acad Sci 108(2):580–605PubMedGoogle Scholar
  68. Cloez S (1864a) Analyse chimique de la pierre météorique d’Orgueil. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 59:37–40Google Scholar
  69. Cloez S (1864b) Note sur la composition chimique de la pierre météorique d’Orgueil. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:986–988Google Scholar
  70. Cloud P (1973) Pseudofossils: a plea for caution. Geology (Boulder) 1(3):123–127Google Scholar
  71. Cody GD, Alexander CMO, Kilcoyne ALD, Yabuta H (2008) Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter. In: Kwok S, Sandford S (eds) Organic matter in space, proceedings IAU symposium No. 251, vol 4. International Astronomical Union, pp 277–284Google Scholar
  72. Cohen EW (1894) Meteoritenkunde. Heft I. Untersuchungen und Charakteristik der Gemengtheile. E. Schweizerbart‘sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  73. Cohen EW (1903) Meteoritenkunde. Heft II. Structurformen; Versuche künstlicher Nachbildung von Meteoriten; Rinde und schwarze Adern; Relief der Oberfäche; Gestalt, Zahl und Grösse der Meteorite; Nachträge zu Heft I, vol 2. E. Schweizerbart‘sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  74. Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Chem Erde-Geochem 68(1):1–29Google Scholar
  75. Cowen R (2011) Meteorites may hold fossils from space – or not. ScienceNews:http://www.sciencenews.org/view/generic/id/70826/title/Meteorites_may_hold_fossils_from_space_--_or_not
  76. Crane D (1972) Invisible colleges, vol 1. The University of Chicago Press, ChicagoGoogle Scholar
  77. Crowe MJ (1999) The extraterrestrial life debate, 1750–1900. Dover, MineolaGoogle Scholar
  78. Damer B, Newman P, Gordon R, Barbalet T, Norkus R, Karpis M (2012) Cyberbiogenesis: a thought experiment and 21st century grand challenge. In: Seckbach J (ed) In the beginning: Precursors of life, chemical models and early biological evolution. Springer, Dordrecht, ppGoogle Scholar
  79. Daubrée GA (1864a) Cosmologie. – Note sur les météorites tombées le 14 mai aux environs d‘Orgueil (Tarn-et-Garonne). Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:984–986Google Scholar
  80. Daubrée GA (1864b) Noveaux renseignements sur le bolide du mai 1864. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:1065–1072Google Scholar
  81. Day W (1984) Genesis on Planet Earth: the Search for Life’s Beginning. Yale University Press, New HavenGoogle Scholar
  82. de Mello DC (2011) Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 40(3):1512–1546Google Scholar
  83. Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61(2):239–261PubMedGoogle Scholar
  84. Deamer DW, Pashley RM (1989a) Amphiphilic components of carbonaceous meteorites. Origins Life Evol Biosph 19:21–38Google Scholar
  85. Deamer DW, Pashley RM (1989b) Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig Life Evol Biosph 19(1):21–38PubMedGoogle Scholar
  86. Deflandre G (1962) Micropaléontologie des météorites. – Remarques critiques sur la présence supposée de microorganismes d‘origine extra-terrestre dans des météorites [Micropaleontology of meteorites. – Critical remarks on the supposed presence of microorganisms of extraterrestrial origin of meteorites]. Comptes rendus hebdomadaires des séances de l’Académie des sciences 254(19 Part 3):3405–3407Google Scholar
  87. Degens ET (1964) Genetic relationships between organic matter in meteorites and sediments. Nature 202(4937):1092–1095PubMedGoogle Scholar
  88. Dodd RT (1983) Meteorites. A petrologic-chemical synthesis. Cambridge University Press, LondonGoogle Scholar
  89. Dombrowski H (1963a) Bacteria from Paleozoic salt deposits. Ann N Y Acad Sci 108(2):453–460Google Scholar
  90. Dombrowski HJ (1963b) Living bacteria from the Paleozoic. Biol Zentrabl 82(4):477–484Google Scholar
  91. Drum RW (1968) Petrifaction of plant tissue in the laboratory. Nature 218:784–785Google Scholar
  92. DuFresne ER, Anders E (1961) The record in the meteorites-V. A thermometer mineral in the Mighei carbonaceous chondrite. Geochim Cosmochim Acta 23(3–4):200–208Google Scholar
  93. Engel MH (2011) The search for extraterrestrial life. J Cosmol 13(March):http://journalofcosmology.com/Life101.html#102
  94. Erhenberg GC (1839) On a meteoric paper which fell from the sky in the year 1682 at Courland, composed of Confervae and Infusoria. Ann Mag Nat Hist 3:185–186Google Scholar
  95. Farrell MA (1933) Living bacteria in ancient rocks and meteorites. Amer Mus Novit 645:1–3Google Scholar
  96. Fisk MR, Popa R, Mason OU, Storrie-Lombardi MC, Vicenzi EP (2006) Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6(1):48–68PubMedGoogle Scholar
  97. Fitch FW, Anders E (1963a) Observations on the nature of the “organized elements” in carbonaceous chondrites. Ann N Y Acad Sci 108(2):495–513PubMedGoogle Scholar
  98. Fitch FW, Anders E (1963b) Organized element: possible indentification in Orgueil meteorite. Science 140(357):1097–1100PubMedGoogle Scholar
  99. Fitch FW, Anders E (1965) Current status of the analysis of organized elements in carbonaceous chondrites. Life Sci Space Res 3:154Google Scholar
  100. Fitch F, Anders E, Schwarcz HP (1962a) ‘Organized elements’ in carbonaceous chondrites. Nature 193(4821):1123–1125Google Scholar
  101. Fitch F, Schwartz HP, Anders E (1962b) Identification of some organized elements in carbonaceous chondrites. J Geophys Res 67(9):3557–3558Google Scholar
  102. Flory DA, Oró J, Fennessey PV (1974) Organic contamination problems in the Viking molecular analysis experiment. Orig Life Evol Biosph 5(3–4):443–455Google Scholar
  103. Folk RL, Lynch FL (1998) Carbonaceous objects resembling nannobacteria in Allende meteorite. Proc SPIE 3441:115–136Google Scholar
  104. Folk RL, Taylor LA (2002) Nannobacterial alteration of pyroxenes in Martian meteorite Allan Hills 84001. Meteoritics Planet Sci 37(8):1057–1069Google Scholar
  105. Folsome CE (1976) Synthetic organic microstructures and the origins of cellular life. Naturwissenschaften 63(7):303–306Google Scholar
  106. Folsome CE (1977) Reply: Organic microstructures and terrestrial protocells. Naturwissenschaften 64(7):381Google Scholar
  107. Folsome CE, Allen RD, Ichinose NK (1975) Organic microstructures as products of Miller-Urey electrical discharges. Precambrian Res 2(3):263–275Google Scholar
  108. Fox SW (1964) Thermal polymerization of amino-acids and production of formed microparticles on lava. Nature 201(4917):336–337PubMedGoogle Scholar
  109. Fox SW (1977) Organic microstructures and terrestrial protocells. Naturwissenschaften 64(7):380PubMedGoogle Scholar
  110. Fox A (2002) Chemical markers for bacteria in extraterrestrial samples. Anat Rec 268(3):180–185PubMedGoogle Scholar
  111. Fox SW, Yuyama S (1963) Abiotic production of primitive protein and formed microparticles. Ann N Y Acad Sci 108(2):487–494PubMedGoogle Scholar
  112. Francis S, Barghoorn ES, Margulis L (1978a) On the experimental silicification of microorganisms. III. Implications of the preservation of the green prokaryotic alga Prochloron and other coccoids for interpretation of the microbial fossil record. Precambrian Res 7(4):377–383Google Scholar
  113. Francis S, Margulis L, Barghoorn ES (1978b) On the experimental silicification of microorganisms. II. On the time of appearance of eucaryotic organisms in the fossil record. Precambrian Res 6(1):65–100Google Scholar
  114. Franks F (1981) Polywater. MIT Press, CambridgeGoogle Scholar
  115. Galippe V, Souffland G (1924) Recherches sur la présence dans les Météorites, les Pierres dures, les Minerais, le Quartz, le Granite, le Basalte, les Cendres et les laves volcaniques, d’organites susceptibles de reciviscence et sur leur resistance aux hautes températures [Research on presence of recovering micoorganisms in meteorites, hard stones, minerals, quartz, granite, basalt, ash and volcanic lava, and their resistance to high temperatures]. CR Acad Sci, Paris 172:1252–1254Google Scholar
  116. Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4(11)Google Scholar
  117. Gaskell T (1962) Do meteorites reveal life in other worlds? New Scientist 14(2893):458–459Google Scholar
  118. Gentner W (1963) Irdische und Meteoritische Materie [Terrestrial and meteoritic matter]. Naturwissenschaften 50(6):191–199Google Scholar
  119. Gibson EK, McKay DS, Clemett SJ, Thomas-Keprta KL, Pillinger CT, Verchovsky AB, Spencer L (2010) Nature of carbon in martian meteorites. Meteoritics Planet Sci 45(Supplement s1):A63Google Scholar
  120. Godon P (2011) Can a meteorite falling on earth originate from earth?. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#108
  121. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51(2):475–478Google Scholar
  122. Gordon R (2008) Hoyle’s tornado origin of artificial life, a computer programming challenge. In: Seckbach J, Gordon R (eds) Divine action and natural selection: science, faith and evolution. World Scientific, Singapore, pp 354–367Google Scholar
  123. Gordon R, Hoover RB (2007) Could there have been a single origin of life in a big bang universe? Proc SPIE 6694. doi: 10.1117/1112.737041
  124. Gordon R, Hoover RB, Tuszynski JA, de Luis J, Camp PJ, Tiffany MA, Nagy SS, Fayek M, Lopez PJ, Lerner BE (2007) Diatoms in space: testing prospects for reliable diatom nanotechnology in microgravity. Proc SPIE 6694:V1–V15. doi: 10.1117/1112.737051 Google Scholar
  125. Gorlenko VM, Zhmur SI, Duda VI, Osipov GA, Suzina NE, Dmitriev VV (1999) Microbial nature of fibrous kerite of Yolyn. Proc SPIE 3755:83–95Google Scholar
  126. Gounelle M, Zolensky ME (2001) A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics Planet Sci 36(10):1321–1329Google Scholar
  127. Green HW, Radcliffe SV, Heuer AH (1971) Allende meteorite: a high-voltage electron petrographic study. Science 172(3986):936–939PubMedGoogle Scholar
  128. Gregory PH (1962) Identity of organized elements from meteorites. Nature 194(4833):1065Google Scholar
  129. Gregory PH (1975) Recognition of microscopic objects. Proc R Soc Lond Ser B 189(1095):161–165Google Scholar
  130. Gronstal A, Pearson V, Kappler A, Dooris C, Anand M, Poitrasson F, Kee TP, Cockell CS (2009) Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria. Meteoritics Planet Sci 44(2):233–247Google Scholar
  131. Grossman JN, Alexander CMO, Wang JH, Brearley AJ (2000) Bleached chondrules: evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteoritics Planet Sci 35(3):467–486Google Scholar
  132. Gümbel H (1878) Uber die in Bayern gefundenen Steinmeteoriten [On the stone meteorites found in Bavaria]. Sitzungsber math-phys KI Kgl bayer Akad Wiss München 1:14–72Google Scholar
  133. Gupta S, Agrawal SC (2006) Motility in Oscillatoria salina as affected by different factors. Folia Microbiol 51(6):565–571Google Scholar
  134. Hahn O (1880) Die Meteorite (Chondrite) unde ihre Organismen. Laupp’schen, TubingenGoogle Scholar
  135. Han J, Simoneit BR, Burlingame AL, Calvin M (1969) Organic analysis on the Pueblito de Allende meteorite. Nature 222(5191):364–365Google Scholar
  136. Hare F (1970) Évolution de systèmes intervenant au cours de l’abiogenèse [Systems development during abiogenesis]. J Chim Phys Chim Biol 67(9):1681–1704Google Scholar
  137. Hayatsu R, Anders E (1981) Organic compounds in meteorites and their origins. Top Curr Chem 99:1–37Google Scholar
  138. Hayatsu R, Matsuoka S, Scott RG, Studier MH, Anders E (1977) Origin of organic matter in the early solar-system-VII. The organic polymer in carbonaceous chondrites. Geochim Cosmochim Acta 41(9):1325–1339Google Scholar
  139. Hayes JM (1967) Organic constituents of meteorites - a review. Geochim Cosmochim Acta 31(9):1395–1440Google Scholar
  140. Hayes JM, Biemann K (1968) High resolution mass spectrometric investigations of the organic constituents of the Murray and Holbrook chondrites. Geochim Cosmochim Acta 32(2):239–267Google Scholar
  141. Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177(9):2387–2395PubMedGoogle Scholar
  142. Hoover RB (1997) Meteorites, microfossils, and exobiology. Proc SPIE 3111:115–136Google Scholar
  143. Hoover RB (2006a) Comets, asteroids, meteorites, and the origin of the biosphere. Proc SPIE 6309:J3090–J3090Google Scholar
  144. Hoover RB (2006b) Comets, carbonaceous meteorites, and the origin of the biosphere. Biogeosci Discuss 3:23–70Google Scholar
  145. Hoover RB (2006c) Fossils of prokaryotic microorganisms in the Orgueil meteorite. Proc SPIE 6309:30902Google Scholar
  146. Hoover RB (2007a) Microfossils of cyanobacteria in carbonaceous meteorites. Proc SPIE 6694:69408–69408Google Scholar
  147. Hoover RB (2007b) Ratios of biogenic elements for distinguishing recent from fossil microorganisms. Proc SPIE 6694:D6940Google Scholar
  148. Hoover RB (2008a) Comets, carbonaceous meteorites and the origin of the biosphere. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 55–68Google Scholar
  149. Hoover RB (2008b) Microfossils of filamentous prokaryotes in CI1 and CM2 meteorites. Proc SPIE 7097:9703Google Scholar
  150. Hoover RB (2011) Fossils of cyanobacteria in CI1 carbonaceous meteorites: implications to life on comets, Europa, and Enceladus. J Cosmol 13(March):http://journalofcosmology.com/Life100.html
  151. Hoover R, Klyce B (2010) Cosmic ancestry: more evidence for indigenous microfossils in carbonaceous meteorites. http://www.panspermia.org/hoover4.htm. Accessed 8 Nov 2010
  152. Hoover RB, Rozanov AY (1999) Biomorphic structures in Mighei carbonaceous chondrite. Proc SPIE 3755:120–127Google Scholar
  153. Hoover RB, Rozanov AY (2001a) Chemical biomarkers and microfossils in carbonaceous meteorites. Proc SPIE 4495:1–18Google Scholar
  154. Hoover RB, Rozanov AY (2001b) Evidence for biomarkers and microfossils in ancient rocks and meteorites. Proc SPIE 4273:15–32Google Scholar
  155. Hoover RB, Rozanov AY (2002a) Astrobiology: traces of life in the cosmos. Proc SPIE 4765:1–19Google Scholar
  156. Hoover RB, Rozanov AY (2002b) Microfossils, biominerals, and chemical biomarkers in meteorites. Proc SPIE 4939:10–27Google Scholar
  157. Hoover RB, Rozanov AY (2011) Filamentous trichomic prokaryotes in carbonaceous meteorites: indigenous microfossils, minerals, or modern bio-contaminants? Proc SPIE 8152. doi: 10.1117/12.898659Google Scholar
  158. Hoover RB, Hoyle F, Wickramasinghe NC, Hoover MJ, Almufti S (1986) Diatoms on Earth, comets, Europa and in interstellar space. Earth Moon Planets 35(1):19–45Google Scholar
  159. Hoover RB, Rozanov AY, Zhmur SI, Gorlenko VM (1998) Further evidence of microfossils in carbonaceous chondrites. Proc SPIE 3441:203–216Google Scholar
  160. Hoover RB, Hoyle F, Wickramasinghe NC, Hoover MJ, Al-Mufti S (1999) Diatoms on Earth, comets, Europa and in interstellar space. Astrophys Space Sci 268(1–3):197–224Google Scholar
  161. Hoover RB, Jerman GA, Rozanov AY, Davies PCW (2003) Biomarkers and microfossils in the Murchison, Rainbow, and Tagish Lake meteorites. Proc SPIE 4859:15–31Google Scholar
  162. Hoover RB, Jerman G, Rozanov AY, Sipiera PP (2004a) Indigenous microfossils in carbonaceous meteorites. Proc SPIE 5555:1–17Google Scholar
  163. Hoover RB, Pikuta EV, Wickramasinghe NC, Wallis MK, Sheldon RB (2004b) Astrobiology of comets. Proc SPIE 5555:93–106Google Scholar
  164. Hoover RB, Rozanov AY, Jerman G, Costen J (2004c) Microfossils in Cl and CO carbonaceous meteorites. Proc SPIE 5163:7–22Google Scholar
  165. Hoover R, Wickramasinghe CN, Joseph R, Schild R (eds) (2011) The discovery of Alien extra-terrestrial life: the cosmic origins of life. Cosmology Science Publishers, CambridgeGoogle Scholar
  166. Horodyski RJ (1981) Pseudomicrofossils and altered microfossils from a middle proterozoic shale, Belt Supergroup, Montana. Precambrian Res 16(1–2):143–154Google Scholar
  167. Hovnanian HP (1966) Detection and epistemology of biotic signatures. Ann N Y Acad Sci 140(A1):294–306Google Scholar
  168. Hudson NP (1935) Preface: The question of living bacteria in stony meterorites. Geol Ser Field Museum Nat Hist 6(14):179–180Google Scholar
  169. Hull DL (1990) Science as a process: an evolutionary account of the social and conceptual development of science. University of Chicago Press, ChicagoGoogle Scholar
  170. Imshenetsky AA (1964) Life and space. Life Sci Space Res 2:2–12Google Scholar
  171. Jacob R, Bentolila P, Leroux T, Deschamps P, Bergeron D, Bergeron L, Pelletier J, Douville P, Gaudet D, Levesque P, Pelletier R, Tremblay C, Allard L, Bouchard M, Gilbert G, Laniel P, Bertrand JP, Choquet Y, Girouard Y, Roberge F, Stgeorges G, Roy D, Nootens S, McGregor M (1994) The reuse of single-use cardiac catheters - safety, economical ethical and legal issues. Can J Cardiol 10(4):413–421Google Scholar
  172. Javaux EJ, Knoll AH, Walter M (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33(1):75–94PubMedGoogle Scholar
  173. Kaufman M (2011) First contact: scientific breakthroughs in the hunt for life beyond Earth. Simon & Schuster, New YorkGoogle Scholar
  174. Kerridge JF (1999) Formation and processing of organics in the early solar system. Space Sci Rev 90(1–2):275–288PubMedGoogle Scholar
  175. Kesselmeyer PA (1864) Der Meteorsteinfall zu Orgueil und Nohic bei Montauban in Südfrankreich, am 14. Mai 1864. Pogg Ann Phys Chem 122:654–658Google Scholar
  176. Kissin YV (2003) Hydrocarbon components in carbonaceous meteorites. Geochim Cosmochim Acta 67(9):1723–1735Google Scholar
  177. Kitajima F, Nakamura T, Takaoka N, Murae T (2002) Evaluating the thermal metamorphism of CM chondrites by using the pyrolytic behavior of carbonaceous macromolecular matter. Geochim Cosmochim Acta 66(1):163–172Google Scholar
  178. Knoll AH (1994) Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. Proc Natl Acad Sci USA 91(15):6743–6750PubMedGoogle Scholar
  179. Kolodny Y, Kerridge JF, Kaplan IR (1980) Deuterium in carbonaceous chondrites. Earth Planet Sci Lett 46(2):149–158Google Scholar
  180. Kozar MP, Krahmer MT, Fox A, Larsson L, Allton J (2001) Lunar dust: A negative control for biomarker analyses of extraterrestrial samples? Geochim Cosmochim Acta 65(19):3307–3317Google Scholar
  181. Krejci-Graf K (1963) Angeblich biogene Stoffe in Meteoriten [Supposedly biogenic substances in meteorites]. Naturwissenschaften 50(16):539–541Google Scholar
  182. Kremp GO (1968) Observations on fossil-like objects in the Orgueil meteorite. J Br Interplanet Soc 21:99Google Scholar
  183. Krumbein WE (2009) Gunflint Chert microbiota revisited - neither stromatolites, nor cyanobacteria. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Dordrecht, pp 53–70Google Scholar
  184. Kwok S (2009) Delivery of complex organic compounds from planetary nebulae to the solar system. Int J Astrobiol 8(3):161–167Google Scholar
  185. Laussedat A (1864) Sur la méthode employée pour déterminer la trajectoire du bolide du 14 mai. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:1100–1105Google Scholar
  186. Lemelle L, Salomé M, Fialin M, Simionovici A, Gillet P (2004) In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite. Spectrochim Acta Part B Atomic Spectrosc 59(10–11):1703–1710Google Scholar
  187. Leymerie, Daubrée A (1864) Sur l‘aérolithe d‘Orgueil (Tarn-et-Garonne), tombé le 14 mai 1864, à 8 heures du soit. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Paris 58:988–990Google Scholar
  188. Line MA (2007) Panspermia in the context of the timing of the origin of life and microbial phylogeny. Int J Astrobiol 6(3):249–254Google Scholar
  189. Line MA (2011) A critical analysis: fossils of cyanobacteria in CII carbonaceous meteorites. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#105
  190. Lipman CB (1932) Are there living bacteria in stony meteorites? Amer Mus Novit 588:1–19Google Scholar
  191. Lipman CB (1936) Bacteria in meteorites. Pop Astron 44:442–446Google Scholar
  192. Llorca J (2004) Organic matter in meteorites. Int Microbiol 7(4):239–248PubMedGoogle Scholar
  193. Luijt DS, Schirm J, Savelkoul PHM, Hoekstra A (2001) Risk of infection by reprocessed and resterilized virus-contaminated catheters: an in-vitro study. Eur Heart J 22(5):378–384PubMedGoogle Scholar
  194. Mackay AL (2007) J. D. Bernal: his legacy to science and to society. J Phys Conf Ser 57:1–16Google Scholar
  195. Mamikunian G, Briggs MH (1963a) A catalog of microstructures observed in carbonaceous chondrites [Technical Report No. 32–398]. Jet Propulsion Laboratory Tech. Rep. Jet Propulsion Laboratory, California Institute of Technology, PasadenaGoogle Scholar
  196. Mamikunian G, Briggs MH (1963b) “Organized elements” in carbonaceous meteorites. Science 139(355):873Google Scholar
  197. Mamikunian G, Briggs MH (1963c) Some microstructures of complex morphology observed in preparations of carbonaceous chondrites made under sterile conditions. Nature 197(487):1245–1248Google Scholar
  198. Manten AA (1966) Microfossil-like objects in meteorites. Earth Sci Rev 1(4):337–341Google Scholar
  199. Marotta R, Leasi F, Uggetti A, Ricci C, Melone G (2010) Dry and survive: morphological changes during anhydrobiosis in a bdelloid rotifer. J Struct Biol 171(1):11–17PubMedGoogle Scholar
  200. Mason J (1877) Life on meteoric stones. In: Mason J (ed) The year-book of facts in science and art for 1877. Ward, Lock & Co, LondonGoogle Scholar
  201. Mason B (1963) Organic matter from space. Sci Am 208(3):43–49Google Scholar
  202. Mautner MN (2002) Planetary resources and astroecology. Planetary microcosm models of asteroid meteorite interiors: electrolyte solutions and microbial growth- space populations and panspermia. Astrobiology 2(1):59–76PubMedGoogle Scholar
  203. Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21(2):121–130Google Scholar
  204. McCall GJH (1973) Meteorites and their origins. Newton Abbot, David and CharlesGoogle Scholar
  205. McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early earth and beyond. Astrobiology 7(1):10–26PubMedGoogle Scholar
  206. McNichol J, Gordon R (2012) Are we from outer space? A critical review of the panspermia hypothesis. In: Seckbach J (ed) Genesis – in the beginning: on prebiotic life, chemical models and early biological evolution. Springer, Dordrecht, ppGoogle Scholar
  207. Meinschein WG (1963) Benzene extracts of the Orgueil meteorite. Nature 197(487):833–836Google Scholar
  208. Meinschein WG, Hennessy DJ, Nagy B (1963) Evidence in meteorites of former life: the organic compounds in carbonaceous chondrites are similar to those found in marine sediments. Ann N Y Acad Sci 108(2):553–579PubMedGoogle Scholar
  209. Meinschein WG, Frondel C, Laur P, Mislow K (1966) Meteorites: optical activity in organic matter. Science 154(3747):377–380PubMedGoogle Scholar
  210. Meinschein WG, Cordes E, Shiner VJ (1970) Search for alkanes of 15 to 30 carbon atom lenath. Science 167(3918):753–754PubMedGoogle Scholar
  211. Merek EL (1973) Imaging and life detection. Bioscience 23(3):153–159Google Scholar
  212. Michels J (1881a) Editorial, December 24. Science 2(78):605Google Scholar
  213. Michels J (1881b) Editorial, May 14. Science 2(46):217Google Scholar
  214. Mimura K, Okamoto M, Sugitani K, Hashimoto S (2007) Selective release of D and 13  C from insoluble organic matter of the Murchison meteorite by impact shock. Meteoritics Planet Sci 42(3):347–355Google Scholar
  215. Morange M (2007) What history tells us X. Fifty years ago: the beginnings of exobiology. J Biosci 32(6 Supplement 2):1083–1087PubMedGoogle Scholar
  216. Morrison P (1962) Carbonaceous “snowflakes” and the origin of life. Science 135(3504):663–664PubMedGoogle Scholar
  217. Morrison D, Niehoff J (1979) Future exploration of the asteroids. In: Gehrels T, Matthews MS (eds) Asteroids. University of Arizona Press, Tucson, pp 227–250Google Scholar
  218. Mueller G (1953) The properties and theory of genesis of the carbonaceous complex within the cold Bokevelt meteorite. Geochim Cosmochim Acta 4(1–2):1–10Google Scholar
  219. Mueller G (1962) Interpretation of micro-structures in carbonaceous meteorites. Nature 196(4858):929–932Google Scholar
  220. Mueller G (1963) Interpretation of micro-structures in carbonaceous meteorites. In: Colombon U, Hobson GD (eds) Advances in organic geochemistry, proceedings of the first international meeting of the geochemical society, Organic Geochemical Group, Milan, Italy; 10–12 Sept 1962. Pergamon Press, New York, pp 119–140Google Scholar
  221. Mueller G (1964a) ‘Impact contamination‘of the Mokoia carbonaceous chondrite. Nature 204(4958):567Google Scholar
  222. Mueller G (1964b) Interpretation of micro-structures in carbonaceous meteorites. In: Colombo U, Hobson GD (eds) Advances in organic geochemistry: proceedings of the international meeting in Milan, 1962. Macmillan, pp 119–140Google Scholar
  223. Mueller G (1965) Interpretation of micro-structures in carbonaceous meteorites. Nature 205(4977):1200Google Scholar
  224. Mukhopadhyay PK, Mossman DJ, Ehrman JM (2007) The case for vestiges of Early Solar System biota in carbonaceous chondrites: petroleum geochemical snapshots and possible future petroleum prospects on Mars Expedition. Instruments, Methods, and Missions for Astrobiology X, vol 6694, pp 66940CGoogle Scholar
  225. Murae T (1999) Fluorescent organic matter in carbonaceous chondrites. Adv Space Res 24(4):469–476PubMedGoogle Scholar
  226. Nagy B (1962) Organic particles embedded in minerals in the Orgueil and Ivuna carbonaceous chondrites. Nature 193:1129–1133Google Scholar
  227. Nagy B (1963) Life-like forms in meteorites and the problems of environmental control on the morphology of fossil and recent protobionta, a conference held by the New York Academy of Sciences, New York, April/May, 1962. Ann N Y Acad Sci 108(2):339–616Google Scholar
  228. Nagy B (1966a) Investigations of the Orgueil carbonaceous meteorite. Geol Fören Stockholm Förh 88(2):235–272Google Scholar
  229. Nagy B (1966b) A study of the optical rotation of lipids extracted from soils, sediments, and the Orgueil carbonaceous meteorite. Proc Natl Acad Sci USA 56(2):389–398PubMedGoogle Scholar
  230. Nagy B (1967) The possibility of extraterrestrial life: ultra-microchemical analyses and electron-microscopic studies of microstructures in carbonaceous meteorites. Rev Palaeobot Palynol 3(1–4):237–242Google Scholar
  231. Nagy B (1968a) Carbonaceous meteorites. Endeavour 27(101):81–86Google Scholar
  232. Nagy B (1968b) Indications of possible biological substances in carbonaceous meteorites. J Astronaut Sci 15(4):161–168Google Scholar
  233. Nagy B (1975) Carbonaceous meteorites. Elsevier Scientific Pub. Co., AmsterdamGoogle Scholar
  234. Nagy B, Claus G (1964) Mineralized microstructures in carbonaceous meteorites. In: Colombo U, Hobson GD (eds) Advances in organic geochemistry. Pergamon Press, New York, pp 109–114Google Scholar
  235. Nagy B, Nagy LA (1969) Early Pre-cambrian Onverwacht microstructures: possibly oldest fossils on earth? Nature 223(5212):1226–1229Google Scholar
  236. Nagy B, Meinschein WG, Hennessy DJ (1961) Mass spectroscopic analysis of the Orgueil meteorite: evidence for biogenic hydrocarbons. Ann N Y Acad Sci 93(2):27–35Google Scholar
  237. Nagy B, Claus G, Fredriksson K, Percy J, Andersen CA, Urey HC (1963a) Electron probe microanalysis of organized elements in the Orgueil meteorite. Nature 198(487):121–125Google Scholar
  238. Nagy B, Fredriksson K, Kudynowski J, Carlson L (1963b) Ultra-violet spectra of organized elements. Nature 200(4906):565–566Google Scholar
  239. Nagy B, Hennessy DJ, Meinschein WG (1963c) Aqueous, low temperature environment of Orgueil meteorite parent body. Ann N Y Acad Sci 108(2):534–552PubMedGoogle Scholar
  240. Nagy B, Murphy MTJ, Modzeleski V, Rouser G, Claus G, Hennessy DJ, Colombo U, Gazzarrini F (1964) Optical activity in saponified organic matter isolated from the interior of the Orgueil meteorite. Nature 202(4929):228–233Google Scholar
  241. Nagy B, Meinsche WG, Hennessy DJ (1965) Review of earlier work on carbonaceous material and organized elements in meteorites. Science 150(3694):380Google Scholar
  242. Nagy B, Drew CM, Hamilton PB, Modzeles VE, Murphy ME, Scott WM, Urey HC, Young M (1970) Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids. Science 167(3918):770–773PubMedGoogle Scholar
  243. Nakamura-Messenger K, Messenger S, Keller LP, Clemett SJ, Zolensky ME (2006) Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science 314(5804):1439–1442PubMedGoogle Scholar
  244. Nininger HN (1938) Concerning bacteria in meteorites. Pop Astron 46:214–215Google Scholar
  245. Nooner DW, Oro J (1967) Organic compounds in meteorites-I. Aliphatic hydrocarbons. Geochim Cosmochim Acta 31(9):1359–1394Google Scholar
  246. Nultsch W (1962) Über Funde von Mikroorganismen in Meteoriten [On findings of microorganisms in meteorites]. Dtsch Med Wochenschr 87(39):1972–1973PubMedGoogle Scholar
  247. Nultsch W (1968) Einfluss von Redox-Systemen auf die Bewegungsaktivitat und das phototaktische Reaktionsverhalten von Phormidium uncinatum [Effect of redox systems on the motility and the phototactic reactions of Phormidium uncinatum]. Arch Mikrobiol 63(4):295–320PubMedGoogle Scholar
  248. O‘Connell E (1964a) Solar system science: 1963 literature survey, Part I. Icarus 3(2):172–180Google Scholar
  249. O‘Connell E (1964b) Solar system science: 1963 literature survey, Part II. Icarus 3(3):277–284Google Scholar
  250. O‘Connell E (1965) Solar system science: 1964 literature survey, Part I. Icarus 4(3):319–333Google Scholar
  251. Orcel J, Alpern B (1966) Étude de la microstructure de la météorite carbonée d’Orgueil [Study of the microstructure of the carbonaceous meteorite of Orgueil]. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences Serie D 262(13):1393–1397Google Scholar
  252. Oró J (1972) Extraterrestrial organic analysis. Space Life Sci 3(4):507–550PubMedGoogle Scholar
  253. Oró J, Skewes HB (1965) Free amino-acids on human fingers: the question of contamination in microanalysis. Nature 207(5001):1042–1045PubMedGoogle Scholar
  254. Oró J, Tornabene T (1965) Bacterial contamination of some carbonaceous meteorites. Science 150(3699):1046–1048Google Scholar
  255. Oyama VI (1972) Search for biogenic structures and viable organisms in lunar samples: a review. Space Life Sci 3(4):377–382PubMedGoogle Scholar
  256. Oyama VI, Merek EL, Silverman MP (1970) A search for viable organisms in a lunar sample. Science 167(3918):773–775PubMedGoogle Scholar
  257. Palik P (1962) Further life-forms in the Orgueil meteorite. Nature 194(4833):1065Google Scholar
  258. Palik P (1963) Extraterrestrial taxa and their nomenclature. Taxon 12(8):283Google Scholar
  259. Papp A (1963) Fossil protobionta and their occurrence. Ann N Y Acad Sci 108(2):461–463PubMedGoogle Scholar
  260. Parkin DW, Brownlow AE, Hunter W (1962) Metallic cosmic dust with amorphous attachments. Nature 193(4816):639–642Google Scholar
  261. Pearson R (1962) Life-forms in carbonaceous chondrites. Nature 194(4833):1064–1065Google Scholar
  262. Pearson VK, Sephton MA, Gilmour I (2006) Molecular and isotopic indicators of alteration in CR chondrites. Meteoritics Planet Sci 41(9):1291–1303Google Scholar
  263. Pearson VK, Kearsley AT, Sephton MA, Gilmour I (2007) The labelling of meteoritic organic material using osmium tetroxide vapour impregnation. Planet Space Sci 55(10):1310–1318Google Scholar
  264. Peltzer ET, Bada JL, Schlesinger G, Miller SL (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. Adv Space Res 4(12):69–74PubMedGoogle Scholar
  265. Pentecost A (1990) The tractive force generated by a motile filamentous cyanobacterium. Microbios Lett 44(175–176):111–118Google Scholar
  266. Persson D, Halberg KA, Jørgensen A, Ricci C, Møbjerg N, Kristensen RM (2011) Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. J Zool System Evolut Res 49:90–97Google Scholar
  267. Pflug HD (1984a) Microvesicles in meteorites, a model of pre-biotic evolution. Naturwissenschaften 71(10):531–533PubMedGoogle Scholar
  268. Pflug HD (1984b) Utrafine structure of the organic matter in meteorites. In: Wickramasinghe NC (ed) Fundamental studies and the future of science. University College Cardiff Press, Cardiff, pp 24–37Google Scholar
  269. Pflug HD (2001) Earliest organic evolution. Essay to the memory of Bartholomew Nagy. Precambrian Res 106(1–2):79–91Google Scholar
  270. Pflug HD, Heinz B (1997) Analysis of fossil-organic nanostructures terrestrial and extraterrestrial. Proc SPIE 3111:86–97Google Scholar
  271. Pikuta E (2011) The discovery of fossil evidence of extraterrestrial life in meteors. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#112
  272. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33(3):183–209PubMedGoogle Scholar
  273. Pisani M (1864) Étude chimique et analyse de l‘aérolithe d’Orgueil. Comptes rendus hebdomadaires des séances de l’Académie des sciences, Paris 59:132–135Google Scholar
  274. Preston LJ, Shuster J, Fernandez-Remolar D, Banerjee NR, Osinski GR, Southam G (2011) The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology 9(3):233–249PubMedGoogle Scholar
  275. R (1881) Mr. Darwin on Dr. Hahn’s discovery of fossil organisms in meteorites. Science 2(61):410Google Scholar
  276. Rachel GW (1881) Fossil organisms in meteorites. Science 2(50):275–277PubMedGoogle Scholar
  277. Rasic NF, Friesen RM, Anderson B, Hoban SA, Olson N, Kress J (2003) Prepared endotracheal tubes: are they a potential source for pathogenic microorganisms? Anesth Analgesia 97(4):1133–1136Google Scholar
  278. Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) (2008) Protocells: bridging nonliving and living matter. MIT Press, CambridgeGoogle Scholar
  279. Rauf K, Hann A, Wickramasinghe C (2010) Microstructure and elemental composition of the Tagish Lake meteorite and its astrobiological implications. Int J Astrobiol 9(1):35–43Google Scholar
  280. Raulin-Cerceau F, Maurel MC, Schneider J (1998) From Panspermia to bioastronomy, the evolution of the hypothesis of universal life. Orig Life Evol Biosph 28(4–6):597–612PubMedGoogle Scholar
  281. Redfield R (2011) The evidence is not convincing: review of fossils of cyanobacteria in C11 carbonaceous meteorites. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#124
  282. Ridgway HF, Lewin RA (1988) Characterization of gliding motility in Flexibacter polymorphus. Cell Motil Cytoskeleton 11(1):46–63PubMedGoogle Scholar
  283. Rietmeijer FJM (1985) A poorly graphitized carbon contaminant in studies of extraterrestrial materials. Meteoritics 20(1):43–48Google Scholar
  284. Rossignol-Strick M, Barghoorn ES (1971) Extraterrestrial abiogenic organization of organic matter: the hollow spheres of the Orgueil meteorite. Space Life Sci 3(2):89–107PubMedGoogle Scholar
  285. Rothschild L (2007) Stephen J. Dick; James E. Strick. The Living Universe: NASA and the Development of Astrobiology [book review]. Isis 98(2):423–424Google Scholar
  286. Roy SK (1935) The question of living bacteria in stony meterorites. Geol Ser Field Museum Nat Hist 6(14):180–198Google Scholar
  287. Roy SK (1937) Additional notes on the question of living bacteria in stony meteorites. Pop Astron 45:499–504Google Scholar
  288. Rozanov AY (2010) Pseudomorphic microbial structures. Paleontol J 44(7):819–826Google Scholar
  289. Rozanov AY, Hoover RB (2004) Atlas of bacteriomorphs in carbonaceous chondrites. Proc SPIE 5163:23–35Google Scholar
  290. Rozanov AY, Zhegallo EA, Ushatinskaya GT, Shuvalova YV, Hoover RB (2001) Bacterial paleontology for astrobiology. Proc SPIE 4495:283–294Google Scholar
  291. Sagan C (1962) Summary of a discussion with Erdtman on organized elements in carbonaceous chondrites. Science 137(3530):626Google Scholar
  292. Schild R (2011) Official statement. J Cosmol 13(March): http://journalofcosmology.com/Life100.html
  293. Sephton MA (2002) Organic compounds in carbonaceous meteorites. Nat Prod Rep 19(3):292–311PubMedGoogle Scholar
  294. Sephton MA (2004) Organic matter in ancient meteorites. Astron Geophys 45(2):8–14Google Scholar
  295. Sephton MA (2005) Organic matter in carbonaceous meteorites: past, present and future research. Philos Trans R Soc A Math Phys Eng Sci 363(1837):2729–2742Google Scholar
  296. Sephton MA, Pillinger CT, Gilmour I (1999) Small-scale hydrous pyrolysis of macromolecular material in meteorites. Planet Space Sci 47(1–2):181–187Google Scholar
  297. Sephton MA, Pillinger CT, Gilmour I (2001) Normal alkanes in meteorites: molecular δ13C values indicate an origin by terrestrial contamination. Precambrian Res 106(1–2):47–58Google Scholar
  298. Sheldon RB, Hoover RB (2008) Cosmological evolution: spatial relativity and the speed of life. Proc SPIE 7097:709716Google Scholar
  299. Silverman SR (1962) Excerpts from letter of 23 May 1962 to Urey from Silverman. Science 137(3530):626–627Google Scholar
  300. Simmonds PG, Rauman AJ, Bollin EM, Gelpi E, Oroó J (1969) Unextractable organic fraction of pueblito de allende metoeorite: evidence for its indigenous nature. Proc Natl Acad Sci USA 64(3):1027–1034PubMedGoogle Scholar
  301. Simpson GG (1964) Nonprevalence of humanoids. We can learn more about life from terrestrial forms than we can from hypothetical extraterrestrial forms. Science 143(3608):769–775PubMedGoogle Scholar
  302. Sipiera PP (2011) A compelling argument: the “fossils” are extra-terrestrial in origin. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#122
  303. Sipiera PP, Hoover RB, Jerman GA (2000) Meteorites and microbes: meteorite collection and ice sampling at Patriot Hills, Thiel Mountains, and South Pole, Antarctica. Proc SPIE 4137:13–21Google Scholar
  304. Soffen GA (1969) Extraterrestrial optical microscopy. Appl Optics 8(7):1341–1347Google Scholar
  305. Staplin FL (1962a) Microfossils from the Orgueil meteorite. Micropaleontology 8(3):343–347Google Scholar
  306. Staplin FL (1962b) Organic remains in meteorites - a review of the problem. J Alberta Soc Petrol Geologist 10(10):575–580Google Scholar
  307. Staplin FL (1965a) Organic remains in meteorites. In: Mamikunian G, Briggs MH (eds) Current aspects of exobiology. Pergamon Press, New York, pp 77–92Google Scholar
  308. Staplin FL (1965b) Possible fossils from Orgueil and other meteorites. Science 150(3694):385Google Scholar
  309. Stauffer H (1961) Primordial argon and neon in carbonaceous chondrites and ureilites. Geochim Cosmochim Acta 24(1–2):70–82Google Scholar
  310. Storrie-Lombardi MC, Hoover RB (2004) Fossil signatures using elemental abundance distributions and Bayesian probabilistic classification. Proc SPIE 5555:18–30Google Scholar
  311. Studier MH, Hayatsu R, Anders E (1968) Origin of organic matter in early solar system-I. Hydrocarbons. Geochim Cosmochim Acta 32(2):151–173Google Scholar
  312. Swart PK, Grady MM, Pillinger CT (1983) A method for the identification and elimination of contamination during carbon isotopic analyses of extraterrestrial samples. Meteoritics 18(2):137–154Google Scholar
  313. Swindle TD, Olson EK (2002) The timing of aqueous weathering on Mars: clues from argon-40-argon-39 analyses of whole-rock samples of the nakhlites Nakhla and Lafayette. Meteoritics Planet Sci 37(S5):A138Google Scholar
  314. Tan WC, VanLandhgham SL (1967) Electron microscopy of biological-like structures in the Orgueil carbonaceous meteorite. Geophys J R Astron Soc 12(3):237Google Scholar
  315. Tasch P (1963) Identity of organized elements in carbonaceous chondrites. Science 142(3589):156–158PubMedGoogle Scholar
  316. Tasch P (1964) Life-forms in meteorites and the problem of terrestrial contamination: a study in methodology. Ann N Y Acad Sci 105:929–950PubMedGoogle Scholar
  317. Taubes G (1993) Bad science: the short life and weird times of cold fusion. Random House, New YorkGoogle Scholar
  318. Thomson KS (1991) Piltdown Man: The Great English mystery story. Am Scientist 79(3):194–201Google Scholar
  319. Thornton J (1890) Advanced physiography, 2nd edn. Longmans, Green, and Co, LondonGoogle Scholar
  320. Timofejev BW (1963) Lebensspuren in Meteoriten: Resultate einer microphytologischen analyse [Traces of life in meteorites: results of a microphytological analysis]. Grana Palynol 4(1):92–99Google Scholar
  321. Urey HC (1962a) Life-forms in meteorites: origin of life-like forms in carbonaceous chondrites. Nature 193(4821):1119–1123Google Scholar
  322. Urey HC (1962b) Lifelike forms in meteorites. Science 137(3530):623–626PubMedGoogle Scholar
  323. Urey HC (1965) Organic material in meteorites: a review. Science 150(3694):387–388Google Scholar
  324. Urey HC (1966) Biological material in meteorites: a review. Science 151(3707):157–166PubMedGoogle Scholar
  325. Urey HC, Arnold JR (1966) Biological materials in carbonaceous chondrites. In: Pittendrigh CS (ed) Biology and the exploration of Mars: report of a study. National Academies, Washington, DC, pp 114–124Google Scholar
  326. Urey HC, Cholnoky BJ, Berger R, Morrison P, Anders E, Papp A, Bourrelly P, Palmer CM, Nagy B, Hennessy DJ, Claus G, Tasch P, Ross R, Fitch FW, Fox SW, Dombrowski H, Mason B, Bernal JD, Meinschein W (1963) Panel discussion: identity of organized elements. Ann N Y Acad Sci 108(2):606–615Google Scholar
  327. Urey HC, Meinschein WG, Nagy B (1968) Comments on meteoritic hydrocarbons. Geochim Cosmochim Acta 32(6):665Google Scholar
  328. Vallentyne JR (1963) Environmental biophysics and microbial ubiquity. Ann N Y Acad Sci 108(2):342–352Google Scholar
  329. Vance P, Pockriss L, Como P (1957) Catch a falling star [Song]. http://lostpedia.wikia.com/wiki/Catch_a_Falling_Star. Accessed 18 June 2011
  330. VanLandingham SL (1965a) Acid resistant microfossils from the Alais and Orgueil meteorites. Nova Hedwigia Z Kryptogamenk 10(1–2):161–176  +  Plates 144–149Google Scholar
  331. VanLandingham SL (1965b) Evidence for microfossils in the Alais and Orgueil carbonaceous meteorites. Nature 208(5014):947–948Google Scholar
  332. VanLandingham SL, Sun CN, Tan WC (1967) Origin of round-body structures in the Orgueil meteorite. Nature 216(5112):252–253Google Scholar
  333. Vdovykin GP (1964) “Organized elements” in carbonaceous chondrites. Geochem Int USSR 4:693–696Google Scholar
  334. Vdovykin GP (1967) Carbon matter of meteorites (organic compounds, diamonds, graphite) [NASA-TT-F-582]. Nauka, MoscowGoogle Scholar
  335. Vdovykin GP (1972) Meteorites and life. NASA (National Aeronautics and Space Administration) Technical Translation TTF (710):168–193Google Scholar
  336. Vdovykin GP (1973) The Mighei meteorite. Space Sci Rev 14(6):832–879Google Scholar
  337. Vinogradov AP, Vdovykin GP (1964) Multimolecular organic matter of carbonaceous chondrites. Geochem Int USSR 5:831–836Google Scholar
  338. Watson JS, Pearson VK, Gilmour I, Sephton MA (2003) Contamination by sesquiterpenoid derivatives in the Orgueil carbonaceous chondrite. Org Geochem 34(1):37–47Google Scholar
  339. Weichmann FG (1882) Fusion-structures in meteorites. Trans N Y Acad Sc 1:153–155Google Scholar
  340. West MW, Ponnamperuma C (1970) Chemical evolution and origin of life: a comprehensive bibliography. Space Life Sci 2(2):225–288PubMedGoogle Scholar
  341. West MW, Gill ED, Kvenvolden KA (1975) Chemical evolution and origin of life: bibliography supplement 1973. Orig Life Evol Biosph 6(1–2):285–300Google Scholar
  342. Whale GF, Walsby AE (1984) Motility of the cyanobacterium Microcoleus chthonoplastes in mud. Br Phycol J 19(2):117–123Google Scholar
  343. Wickramasinghe C (2011a) Bacterial morphologies supporting cometary panspermia: a reappraisal. Int J Astrobiol 10(1):25–30Google Scholar
  344. Wickramasinghe C (2011b) Microfossils in meteors and comet dust: a vindication of panspermia. J Cosmol 13(March): http://journalofcosmology.com/Life101.html#112
  345. Wickramasinghe NC (2011c) Extraterrestrial life and censorship. arXiv:http://arxiv.org/abs/1104.1314
  346. Wickramasinghe C, Wallis MK, Gibson CH, Wallis J, Al-Mufti S, Miyake N (2010) Bacterial morphologies in carbonaceous meteorites and comet dust. Proc SPIE 7819:781913Google Scholar
  347. Wiik HB (1956) The chemical composition of some stony meteorites. Geochim Cosmochim Acta 9(5–6):279–289Google Scholar
  348. Young JD, Martel J (2010) The rise and fall of nanobacteria. Sci Am 302(1):52–59PubMedGoogle Scholar
  349. Youngbull C (2011) Fear of the unknown: do you believe in extraterrestrial life? Definitely maybe! J Cosmol 13(March): http://journalofcosmology.com/Life101.html#103
  350. Zenobi R, Philippoz JM, Buseck PR, Zare RN (1989) Spatially resolved organic analysis of the Allende meteorite. Science 246(4933):1026–1029PubMedGoogle Scholar
  351. Zhmur SI (2002) Possible environments of carbon hondrites accumulation. ESA Special Publications 518:493–494Google Scholar
  352. Zhmur SI, Gerasimenko LM (1999) Biomorphic forms in carbonaceous meteorite Alliende and possible ecological system - producer of organic matter of hondrites. Proc SPIE 3755:48–58Google Scholar
  353. Zhmur SI, Rozanov AY, Gorlenko VM (1997) Lithified remnants of microorganisms in carbonaceous chondrites. Geochem Int 35(1):58–60Google Scholar
  354. Zhmur SI, Gorlenko VM, Gerasimenko LM (1999) Comparative morphology of modern and ancient terrestrial bacteria and microfossils from carbonaceous meteorites. Microbiology 68(6):739–745Google Scholar
  355. Zhmur SI, Duda VI, Roizeman FM (2001) Microfossils in Early Archaen graphites of Aldan shield and some aspects of panspermia. Proc SPIE 4495:19–26Google Scholar
  356. Zigel F (1962) ЖИÐHБ B METEOPИTE [Life in a meteorite, English translation: CFSTI, JPRS-17326]. Ogonek 47:28–29Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Embryogenesis CenterGulf Specimen Marine LaboratoriesPanaceaUSA
  2. 2.National Research Council of CanadaInstitute for Marine BiosciencesHalifaxCanada

Personalised recommendations