Advertisement

Cooptive Evolution of Prebiotic Chemical Networks

  • Chrisantha Fernando
  • Vera Vasas
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 22)

Abstract

A mechanism of Darwinian chemical evolution is proposed based on cooptation of chemical avalanches occurring in a catalytic network of molecules enclosed in protocell compartments. This intermediate stage of information transmission would have been of importance prior to template replication and may be necessary to explain the origin of highly complex molecules such as nucleotides capable of template replication.

Keywords

Reaction Network Artificial Selection Chemical Network Multiple Attractor Network Genotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Funding was provided by the E-FLUX FET OPEN ICT FP7 grant. We thank Mauro Santos, Stuart Kauffman, and Eors Szathmary for invaluable discussions and guidance in this project.

References

  1. Bagley RJ, Farmer JD (1991) Spontaneous emergence of a metabolism. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II: Santa Fe Institude studies in the sciences of complexity. Addison-Wesley, Redwood CityGoogle Scholar
  2. Bagley RJ, Farmer JD et al (1991) Evolution of a metabolism. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II, Studies in the sciences of complexity. Addison-Wesley, Redwood CityGoogle Scholar
  3. Dyson F (1986) Origins of life. Cambridge University Press, CambridgeGoogle Scholar
  4. Farmer JD, Kauffman SA et al (1986) Autocatalytic replication of polymers. Phys D 22:50–67CrossRefGoogle Scholar
  5. Fernando C, Rowe J (2007) Natural selection in chemical evolution. J Theor Biol 247:152–167PubMedCrossRefGoogle Scholar
  6. Fernando C, Rowe J (2008) The origin of autonomous agents by natural selection. Biosystems 91:355–373PubMedCrossRefGoogle Scholar
  7. Fernando C, Santos M et al (2005) Evolutionary potential and requirements for minimal protocells. Top Curr Chem 259:167–211CrossRefGoogle Scholar
  8. Fernando C, Von Kiedrowski G, Szathmáry E (2007) A stochastic model of nonenzymatic nucleic acid replication: “elongators” sequester replicators. J Mol Evol 64:572–585PubMedCrossRefGoogle Scholar
  9. Fontana W, Buss LW (1994) What would be conserved if ‘the tape were played twice’? Proc Natl Acad Sci U S A 91:757–761PubMedCrossRefGoogle Scholar
  10. Fontanari JF, Santos M et al (2006) Coexistence and error propagation in pre-biotic vesicle models: a group selection approach. J Theor Biol 239(2):247–256PubMedCrossRefGoogle Scholar
  11. Gánti T (2003) The principles of life. Oxford University Press, OxfordCrossRefGoogle Scholar
  12. Gardner PM, Winzer K et al (2009) Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat Chem 1:377–383PubMedCrossRefGoogle Scholar
  13. Gilbert W (1986) Origin of life: the RNA world. Nature 319:618CrossRefGoogle Scholar
  14. Hogeweg P (1998) On searching generic properties of non generic phenomena: an approach to bioinformatic theory formation. In: Adami C, Belew RK, Kitano H, Taylor CE (eds) Artificial life VI. MIT Press, Cambridge/London, pp 285–294Google Scholar
  15. Hordijk W, Steel M (2004) Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J Theor Biol 227:451–461PubMedCrossRefGoogle Scholar
  16. Jain S, Krishna S (1998) Autocatalytic sets and the growth of complexity in an evolutionary model. Phys Rev Lett 81:5684–5687CrossRefGoogle Scholar
  17. Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24PubMedCrossRefGoogle Scholar
  18. Kauffman SA (1993) The origins of order. Oxford University Press, New YorkGoogle Scholar
  19. Kresge N, Simoni RD et al (2005) Bernard L. Horecker’s contributions to elucidating the pentose phosphate pathway. J Biol Chem 280:e26Google Scholar
  20. Krishna, S (2003) Formation and destruction of autocatalytic sets in an evolving network model. PhD thesis, Center for Theoretical Studies, Indian Institute of Science, BangaloreGoogle Scholar
  21. Kun A, Papp B et al (2008) Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol 9:R51PubMedCrossRefGoogle Scholar
  22. Lifson S (1997) On the crucial stages in the origin of animate matter. J Mol Evol 44:1–8PubMedCrossRefGoogle Scholar
  23. Martin W, Russel M (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 362:1887–1926PubMedCrossRefGoogle Scholar
  24. Maynard Smith J (1986) The problems of biology. Oxford University Press, OxfordGoogle Scholar
  25. Miller SL (1953) Production of amino acids under possible primitive Earth conditions. Science 117:3046CrossRefGoogle Scholar
  26. Segrè D, Lancet D et al (1998) Graded Autocatalysis Replication Domain (GARD): kinetic analysis of self-replication in mutually catalytic sets. Orig Life Evol Biosph 28:501–514CrossRefGoogle Scholar
  27. Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81(2):105–125PubMedCrossRefGoogle Scholar
  28. Shenhav B, Bar-Even A, Kafri R, Lancet D (2005) Polymer GARD: computer simulation of covalent bond formation in reproducing molecular assemblies. Orig Life Evol Biosph 35(2):111–133PubMedCrossRefGoogle Scholar
  29. Szathmary E (2000) The evolution of replicators. Philos Trans R Soc Lond B 355:1669–1676CrossRefGoogle Scholar
  30. Vasas V, Szathmáry E et al (2010) Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc Natl Acad Sci U S A 107(4):1470–1475PubMedCrossRefGoogle Scholar
  31. Vasas V, Fernando C, Santos M, Kauffman S, Szathmary E (2012) Evolution before genes. Biol Direct 7:1Google Scholar
  32. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci U S A 87:200–204PubMedCrossRefGoogle Scholar
  33. Watson RA (2006) Compositional evolution: the impact of sex, symbiosis, and modularity on the gradualist framework of evolution. MIT Press, CambridgeGoogle Scholar
  34. Williams H, Lenton T (2007) Artificial ecosystem selection for evolutionary optimisation. In: Almeida e Costa F et al (eds) Advances in artificial life: proceedings of the 9th European conference on artificial life. Springer, Berlin/Heidelberg, pp 93–102Google Scholar
  35. Zahnle K, Schaefer L, Fegley B (2011) Earth’s earliest atmospheres. Cold Spring Harb Perspect Biol 2010 2:a004895CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of SussexBrightonUK
  2. 2.Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE)Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations