Skip to main content

The Prebiotic Chemistry of Alternative Nucleic Acids

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

To adapt and survive, life as we know it must have a genetic component to pass on information accumulated during natural selection. It has been suggested that life may have begun with a self-replicating RNA molecule. This appears chemically untenable as the prebiotic synthesis of RNA was unlikely on the primitive Earth. It is now known that biological nucleic acids (DNA and RNA) are not chemically unique in their ability to serve as informational templates. Many structural isomers of nucleic acids are now known. Alternative genetic polymers that were more easily synthesized under plausible geochemical conditions may have preceded RNA. Despite some 50 years of research, many of the structural alterations of nucleic acids of possible relevance to the origin of life remain uninvestigated, though this may prove to be one of the most experimentally tractable areas in prebiotic chemistry. Various structures and the constraints posed by prebiotic chemistry are reviewed herein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bag BG, von Kiedrowski G (1996) Templates, autocatalysis and molecular replication. Pure Appl Chem 68:2145–2152

    CAS  Google Scholar 

  • Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. Chembiochem 11:1240–1243

    PubMed  CAS  Google Scholar 

  • Bean HD, Anet FA, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36:39–63

    PubMed  CAS  Google Scholar 

  • Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37:784–797

    PubMed  CAS  Google Scholar 

  • Benner SA, Hutter D (2002) Phosphates, DNA, and the search for non-terrean life: a second generation model for genetic molecules. Bioorg Chem 30:62–80

    PubMed  CAS  Google Scholar 

  • Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci U S A 86:7054–7058

    PubMed  CAS  Google Scholar 

  • Benner SA, Burgstaller P, Battersby TR, Jurczyk S (1999) Did the RNA world exploit an expanded genetic alphabet? In: Gesteland RF, Cech T, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Biebricher CK, Eigen M (2005) The error threshold. Virus Res 107:117–127

    PubMed  CAS  Google Scholar 

  • Bielski R, Tencer M (2007) A possible path to the RNA world: enantioselective and diastereoselective purification of ribose. Orig Life Evol Biosph 37:167–175

    PubMed  CAS  Google Scholar 

  • Böhler C, Nielsen PE, Orgel LE (1995) Template switching between PNA and RNA oligonucleotides. Nature 376:578–581

    PubMed  Google Scholar 

  • Borquez E, Cleaves HJ, Lazcano A, Miller SL (2005) An investigation of prebiotic purine synthesis from the hydrolysis of HCN polymers. Orig Life Evol Biosph 35:79–90

    PubMed  CAS  Google Scholar 

  • Botta O, Bada JL (2002) Extraterrestrial organic compounds in meteorites. Surv Geophysics 23:411–467

    Google Scholar 

  • Brachet J (1959) Les acides nucléiques et l’origène des protéines. In: The origin of life on Earth (Academy of Sciences of the U.S.S.R: Oparin AI, Pasynskii AG, Braunshtein AE, Pavlovskaya TE (eds), English-French-German edition, Clark F, Synge RLM (eds)). MacMillan, New York, pp 361–367

    Google Scholar 

  • Bredereck H, Gompper R, Schuh HGV, Theilig G (1959) Neuere Methoden der präparativen organischen Chemie II. 16. Synthesen mit Säure-amiden, insbesondere mit Formamid. Angew Chem 71:753

    Google Scholar 

  • Breslow R, Shepard TL (1996) Why natural DNA is based on 2′-deoxyribose, with 3′,5′- phosphodiester links. Pure Appl Chem 68:2037–2041

    CAS  Google Scholar 

  • Brückner AM, Garcia M, Marsh A, Gellman SH, Diederichsen U (2003) Synthesis of novel nucleo-β-amino acids and nucleobase-functionalized β-peptides. Eur J Org Chem 18:3555–3561

    Google Scholar 

  • Buttrey JD, Jones AS, Walker RT (1975) Synthetic analogues of polynucleotides. XIII. The resolution of DL-β-(thymin-1-yl) alanine and polymerization of the DL-β-(thymin-1-yl) alanines. Tetrahedron 31:73–75

    CAS  Google Scholar 

  • Cairns-Smith A (1977) Takeover mechanisms and early biochemical evolution. Biosystems 9:105–109

    PubMed  CAS  Google Scholar 

  • Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539

    PubMed  CAS  Google Scholar 

  • Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    PubMed  CAS  Google Scholar 

  • Cheikh AB, Orgel LE (1990) Polymerization of amino acids containing nucleotide bases. J Mol Evol 30:315–321

    PubMed  CAS  Google Scholar 

  • Cleaves HJ (2002) The reactions of nitrogen heterocycles with acrolein: scope and prebiotic significance. Astrobiology 2:403–415

    PubMed  CAS  Google Scholar 

  • Cleaves HJ (2003) The prebiotic synthesis of acrolein. Monatsh Chem 134:585–593

    CAS  Google Scholar 

  • Cleaves HJ, Chalmers JH (2004) Extremophiles may be irrelevant to the origin of life. Astrobiology 4:1–9

    PubMed  CAS  Google Scholar 

  • Cleaves HJ, Lazcano A (2009) Origin of biomolecules. In: Zaikowski L, Friedrich JM (eds) Chemical Evolution II: From origins of life to modern society, American Chemical Society Symposium Series. Oxford University Press, New York

    Google Scholar 

  • Cleaves HJ, Miller SL (2007) Organic chemistry on the primitive Earth and beyond. In: Rigoutsos I, Stephanopoulos G (eds) Systems biology: Volume I: Genomics. Oxford University Press, New York

    Google Scholar 

  • Cockell CS, Airo A (2002) On the plausibility of a UV transparent biochemistry. Orig Life Evol Biosph 32:255–274

    PubMed  CAS  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    PubMed  CAS  Google Scholar 

  • Crippa S, Di Gennaro P, Lucini R, Orlandi M, Rindone B (1993) Characterization of adducts of nucleic acid bases and acrylic monomers. Gazz Chim Ital 123:197–203

    CAS  Google Scholar 

  • Cronin JR, Cooper GW, Pizzarello S (1995) Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite. Adv Space Res 15:91–97

    PubMed  CAS  Google Scholar 

  • de Duve C (1991) Blueprint for a cell: the nature and origin of life. N. Patterson, Burlington

    Google Scholar 

  • De Graaf RM, Visscher J, Schwartz AW (1998) Prebiotic chemistry of phosphonic acids: products derived from phosphonoacetaldehyde in the presence of formaldehyde. Orig Life Evol Biosph 28:271–282

    PubMed  Google Scholar 

  • De Mesmaeker A, Waldner A, Fritsch V, Lebreton J, Wolf RM (1994) Synthetic modifications of antisense oligonucleotides: novel backbone replacements with improved properties. Bull Soc Chim Belg 103:705–717

    Google Scholar 

  • Diederichsen U (1996) Pairing properties of alanyl peptide nucleic acids containing an amino acid backbone with alternating configuration. Angew Chem Int Ed 35:445–448

    CAS  Google Scholar 

  • Diederichsen U, Schmitt HW (1998) β-homoalanyl PNAs: synthesis and indication of higher ordered structures. Angew Chem Int Ed 37:302–305

    CAS  Google Scholar 

  • Doherty EA, Doudna JA (2000) Ribozyme structures and mechanisms. Annu Rev Biochem 69:597–615

    PubMed  CAS  Google Scholar 

  • Dyson F (1999) Origins of life (Revised edition). Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA) oligonucleotide analogues with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    CAS  Google Scholar 

  • Eigen M, Schuster P (1976) The hypercycle: a principle of self-organization. Springer, Berlin

    Google Scholar 

  • Eriksson M, Christensen L, Schmidt J, Haaima G, Orgel L, Nielsen PE (1998) Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution. New J Chem 22:1055–1059

    CAS  Google Scholar 

  • Eschenmoser A (1997) Towards a chemical etiology of nucleic acid structure. Orig Life Evol Biosph 27:535–553

    PubMed  CAS  Google Scholar 

  • Eschenmoser A (2004) The TNA-family of nucleic acid systems: properties and prospects. Orig Life Evol Biosph 34:277–306

    PubMed  CAS  Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines, and amino acids on the primitive Earth. J Mol Evol 11:293–311

    PubMed  CAS  Google Scholar 

  • Friedmann N, Haverland WJ, Miller SL (1971) Prebiotic synthesis of the aromatic and other protein amino acids. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland Publishing Company, Amsterdam/New York

    Google Scholar 

  • Fuller WD, Sanchez RA, Orgel LE (1972) Solid-state synthesis of purine nucleosides. J Mol Evol 1:249–257

    PubMed  CAS  Google Scholar 

  • Gesteland R, Cech T, Atkins J (1999) The RNA world, 2nd edn, Cold Spring Harbor Monograph Series 37. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Google Scholar 

  • Grzeskowiak K, Webb TR, Orgel LE (1984) Template-directed synthesis with 2-aminoadenosine. J Mol Evol 21:81–83

    PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    PubMed  CAS  Google Scholar 

  • Haldane JBS (1965) Data needed for a blueprint of the first organism. In: Fox SW (ed) The origin of prebiological systems and of their molecular matrices. Academic, New York, pp 11–18

    Google Scholar 

  • Harada K, Orgel LE (1990) Template-directed oligomerization of 5′-deoxy-5′-nucleosideacetic acid derivatives. Orig Life Evol Biosph 20:151–160

    PubMed  CAS  Google Scholar 

  • Hendrix C, Rosemeyer H, Verheggen I, Seela F, Van Aerschot A, Herdewijn P (1997) 1′,5′-anhydrohexitol oligonucleotides: synthesis, base pairing and recognition by regular oligodeoxyribonucleotides and oligoribonucleotides. Chem A Eur J 3:110–120

    CAS  Google Scholar 

  • Hill AR Jr, Nord LD, Orgel LE, Robins RK (1988) Cyclization of nucleotide analogues as an obstacle to polymerization. J Mol Evol 28:170–171

    PubMed  CAS  Google Scholar 

  • Hill AR Jr, Kumar S, Patil VD, Leonard NJ, Orgel LE (1991) Which 3-ribofuranosyl-substituted purine 5′-phosphates undergo template-directed oligomerization? J Mol Evol 32:447–453

    PubMed  CAS  Google Scholar 

  • Hollis JM, Jewell PR, Lovas FJ, Remijan A, Møllendal H (2004) Green Bank Telescope detection of new interstellar aldehydes: propenal and propanal. Astrophys J 610:L21–L24

    CAS  Google Scholar 

  • Howarth NM, Topham CM, Searcey M, Wakelin LPG (1996) Molecular simulation and synthesis of peptide nucleic acid analogues (α-PNA) of DNA. Irish J Med Sci 165(Supp 3):23

    Google Scholar 

  • Huang Z, Schneider KC, Benner SA (1991) Building blocks for oligonucleotide analogues with dimethylene sulfide, sulfoxide, and sulfone groups replacing phosphodiester linkages. J Org Chem 56:3869–3882

    CAS  Google Scholar 

  • Hud NV, Feigon J (1997) Localization of divalent metal ions in the minor groove of DNA A-tracts. J Am Chem Soc 119:5756–5757

    CAS  Google Scholar 

  • Joyce GF (1987) Non-enzymatic template-directed synthesis of informational macromolecules. Cold Spring Harb Symp Quant Biol 52:41–51

    PubMed  CAS  Google Scholar 

  • Joyce GF, Orgel LE (1993) Prospects for understanding the origin of the RNA world. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Joyce G, Schwartz A, Miller S, Orgel L (1987) The case for an ancestral genetic system involving simple analogs of the nucleotides. Proc Natl Acad Sci U S A 84:4398–4402

    PubMed  CAS  Google Scholar 

  • Kanavarioti A, Monnard PA, Deamer DW (2001) Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1:271–281

    PubMed  CAS  Google Scholar 

  • Kaufman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Google Scholar 

  • Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol 41:693–702

    PubMed  CAS  Google Scholar 

  • Kolb VM, Dworkin JP, Miller SL (1994) Alternative bases in the RNA world: the prebiotic synthesis of urazole and its ribosides. J Mol Evol 38:549–557

    PubMed  CAS  Google Scholar 

  • Kool ET (2002) Replacing the nucleobases in DNA with designer molecules. Acc Chem Res 35:936–943

    PubMed  CAS  Google Scholar 

  • Kool ET, Morales JC, Guckian KM (2000) Mimicking the structure and function of DNA: insights into DNA stability and replication. Angew Chem Int Ed 39:990–1009

    CAS  Google Scholar 

  • Koppitz M, Nielsen PE, Orgel LE (1998) Formation of oligonucleotide-PNA-chimeras by template-directed ligation. J Am Chem Soc 120:4563–4569

    PubMed  CAS  Google Scholar 

  • Krishnamurthy R, Arrhenius G, Eschenmoser A (1999) Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Orig Life Evol Biosph 29:333–354

    PubMed  CAS  Google Scholar 

  • Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010) The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986

    PubMed  CAS  Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci U S A 92:8158–8160

    PubMed  CAS  Google Scholar 

  • Lazcano A (2000) Origins of life: history of ideas. In: Margulis L, Matthews C, Haselton A (eds) Environmental evolution: effects of the origin and evolution of life on planet Earth. The MIT Press, Cambridge, MA

    Google Scholar 

  • Lenzi A, Reginato G, Taddei M, Trifilieff E (1995) Solid phase synthesis of a selfcomplementary (antiparallel) chiral peptidic nucleic acid strand. Tetahedron Lett 36:1717–1718

    CAS  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci U S A 95:7933–7938

    PubMed  CAS  Google Scholar 

  • Levy M, Miller SL (1999) The prebiotic synthesis of modified purines and their potential role in the RNA world. J Mol Evol 48:631–637

    PubMed  CAS  Google Scholar 

  • Levy M, Miller SL, Oró J (1999) Production of guanine from NH4CN polymerizations. J Mol Evol 49:165–168

    PubMed  CAS  Google Scholar 

  • Lira EP, Huffmann CW (1966) Some Michael-type reactions with adenine. J Org Chem 31:2188–2191

    CAS  Google Scholar 

  • Lohse P, Oberhauser B, Oberhauser-Hofbauer B, Baschang G, Eschenmoser A (1996) Chemie von α-aminonitrilen. XVII. Oligo(nukleodipeptamidinium)-salze. Croat Chem Acta 69:535–562

    CAS  Google Scholar 

  • Lutz MJ, Horlacher J, Benner SA (1998) Recognition of a non-standard base pair by thermostable DNA polymerases. Bioorg Med Chem Lett 8:1149–1152

    PubMed  CAS  Google Scholar 

  • Mac Donaill D (2002) A parity code interpretation of nucleotide alphabet composition. Chem Commun 2002:2062–2063

    Google Scholar 

  • Miller SL (1992) The prebiotic synthesis of organic compounds as a step toward the origin of life. In: Schopf JW (ed) Major events in the history of life. Jones and Bartlett Publishers, Boston, pp 1–28

    Google Scholar 

  • Miller SL (1997) Peptide nucleic acids and prebiotic chemistry. Nat Struct Biol 4:167–169

    PubMed  CAS  Google Scholar 

  • Mittapalli G, Reddy K, Xiong H, Munoz O, Han B, De Riccardis F, Krishnamurthy R, Eschenmoser A (2007a) Mapping the landscape of potentially primordial Informational oligomers: oligodipeptides and oligodipeptoids tagged with triazines as recognition elements. Angew Chem Int Ed 46:2470–2477

    CAS  Google Scholar 

  • Mittapalli GK, Osornio YM, Guerrero MA, Reddy KR, Krishnamurthy R, Eschenmoser A (2007b) Mapping the landscape of potentially primordial informational oligomers: oligodipeptides tagged with 2,4-disubstituted 5-aminopyrimidines as recognition elements. Angew Chem Int Ed Engl 46:2478–2484

    PubMed  CAS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002a) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    PubMed  CAS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002b) The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32:195–208

    PubMed  CAS  Google Scholar 

  • Morowitz HJ (1992) Beginnings of cellular life: metabolism recapitulates biogenesis. Yale University Press, New Haven

    Google Scholar 

  • Nelsestuen GL (1980) Origin of life: consideration of alternatives to proteins and nucleic acids. J Mol Evol 15:59–72

    PubMed  CAS  Google Scholar 

  • Nelson K, Levy M, Miller S (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci U S A 97:3868–3871

    PubMed  CAS  Google Scholar 

  • Nielsen PE (1993) Peptide nucleic acid (PNA): a model structure for the primordial genetic material? Orig Life Evol Biosph 23:323–327

    PubMed  CAS  Google Scholar 

  • Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408:949–950

    PubMed  CAS  Google Scholar 

  • Oparin AI (1938) The origin of life (translated by S Margulis). Macmillan, New York

    Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    PubMed  CAS  Google Scholar 

  • Orgel LE (1987) The origin of self-replicating molecules. In: Eugene Yates F (ed) Self-organizing systems: the emergence of order. Plenum Press, New York

    Google Scholar 

  • Orgel LE (1998) Polymerization on the rocks: theoretical introduction. Orig Life Evol Biosph 28:227–234

    PubMed  CAS  Google Scholar 

  • Orgel LE (2000) Self-organizing biochemical cycles. Proc Natl Acad Sci U S A 97:12503–12507

    PubMed  CAS  Google Scholar 

  • Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 6:e18

    PubMed  Google Scholar 

  • Oró J, Kimball AP (1961) Synthesis of purines under primitive Earth conditions I. Adenine from hydrogen cyanide. Arch Biochem Biophys 92:221

    Google Scholar 

  • Osterberg R, Orgel LE, Lohrmann R (1973) Urea-catalyzed phosphorylation reactions. J Mol Evol 2:231–234

    PubMed  CAS  Google Scholar 

  • Park TK, Feng Q, Rebek J Jr (1992) Synthetic replicators and extrabiotic chemistry. J Am Chem Soc 114:4529–4532

    CAS  Google Scholar 

  • Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci U S A 105:853–858

    PubMed  CAS  Google Scholar 

  • Périgaud C, Gosselin G, Imbach JL (1992) Nucleoside analogues as chemotherapeutic agents: a review. Nucleosides Nucleotides Nucleic Acids 11:903–945

    Google Scholar 

  • Peyser JR, Ferris JP (2001) The rates of hydrolysis of thymidyl-3′,5′-thymidine-H-phosphonate: the possible role of nucleic acids linked by diesters of phosphorous acid in the origins of life. Orig Life Evol Biosph 31:363–380

    PubMed  CAS  Google Scholar 

  • Pitha J, Pitha PM (1970) Preparation and properties of poly-9-vinyladenine. Biopolymers 9:965–977

    PubMed  CAS  Google Scholar 

  • Pitha J, Pitha PM, Ts’o POP (1970) Poly (1-vinyluracil): the preparation and interaction with adenosine derivatives. Biochem Biophys Acta 204:39–48

    PubMed  CAS  Google Scholar 

  • Pitsch S, Wendeborn S, Juan B, Eschenmoser A (1993) Why pentose and not hexose-nucleic acids? Part VII. Pyranosyl-RNA (“p-RNA”). Helv Chim Acta 76:2161–2183

    CAS  Google Scholar 

  • Pitsch S, Eschenmoser A, Gedulin B, Hui S, Arrhenius G (1995) Mineral induced formation of sugar phosphates. Orig Life Evol Biosph 25:297–334

    PubMed  CAS  Google Scholar 

  • Pizzarello S (2006) The chemistry of life’s origin: a carbonaceous meteorite perspective. Acc Chem Res 39:231–237

    PubMed  CAS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    PubMed  CAS  Google Scholar 

  • Rebek J Jr (1991) Molecular recognition and the development of self-replicating systems. Experientia 47:1096–1104

    PubMed  CAS  Google Scholar 

  • Reid C, Orgel LE (1967) Synthesis of sugars in potentially prebiotic conditions. Nature 216:455–456

    PubMed  CAS  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196

    PubMed  CAS  Google Scholar 

  • Rich A (1962) On the problems of evolution and biochemical information transfer. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 103–126

    Google Scholar 

  • Robertson MP, Miller SL (1995) Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268:702–705

    PubMed  CAS  Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Google Scholar 

  • Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem 9:1249–1253

    PubMed  CAS  Google Scholar 

  • Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47:531–543

    PubMed  CAS  Google Scholar 

  • Sanghvi YS, Cook PD (1994) Carbohydrate modifications in antisense research, ACS Symposium series 580. American Chemical Society, Washington, DC

    Google Scholar 

  • Schneider KC, Benner SA (1990) Oligonucleotides containing flexible nucleoside analogues. J Am Chem Soc 112:453–455

    CAS  Google Scholar 

  • Schoning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′-2′) oligonucleotide system. Science 290:1347–1351

    PubMed  CAS  Google Scholar 

  • Schwartz AW (1989) Nucleic acid analogues and the origins of replication. Adv Space Res 9:77–81

    PubMed  CAS  Google Scholar 

  • Schwartz AW (1995) The RNA world and its origins. Planet Space Sci 43:161–165

    PubMed  CAS  Google Scholar 

  • Schwartz AW, Bakker CG (1989) Was adenine the first purine? Science 245:1102–1104

    PubMed  CAS  Google Scholar 

  • Schwartz A, de Graaf R (1993) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106

    CAS  Google Scholar 

  • Schwartz AW, Orgel LE (1985) Template-directed synthesis of novel, nucleic acid-like structures. Science 228:585–587

    PubMed  CAS  Google Scholar 

  • Schwartz AW, van der Veen M, Bisseling T, Chittenden GJF (1975) Prebiotic nucleotide synthesis – demonstration of a geologically plausible pathway. Orig Life Evol Biosph 6:163–168

    CAS  Google Scholar 

  • Schwartz AW, Voet AB, Van der Veen M (1984) Recent progress in the prebiotic chemistry of HCN. Orig Life Evol Biosph 14:91–98

    CAS  Google Scholar 

  • Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85

    PubMed  CAS  Google Scholar 

  • Sobolewski AL, Domcke W (2010) Molecular mechanisms of the photostability of life. Phys Chem Chem Phys 12:4897–4898

    PubMed  CAS  Google Scholar 

  • Stirchak EP, Summerton JE, Weller DD (1987) Uncharged stereoregular nucleic acid analogues. I. Synthesis of a cytosine-containing oligomer with carbamate internucleoside linkages. J Org Chem 52:4202–4206

    CAS  Google Scholar 

  • Sutherland JD, Weaver GW (1994) Studies on a potentially prebiotic synthesis of RNA. Tetrahedron Lett 35:9105–9108

    CAS  Google Scholar 

  • Tohidi M, Orgel L (1989) Some acyclic analogues of nucleotides and their template-directed reactions. J Mol Evol 28:367–373

    PubMed  CAS  Google Scholar 

  • Trinks H, Schröder W, Biebricher C (2005) Ice and the origin of life. Orig Life Evol Biosph 35:429–445

    PubMed  CAS  Google Scholar 

  • Uhlmann U, Peyman A (1990) Antisense oligonucleotides: a new therapeutic principle. Chem Rev 90:543–579

    CAS  Google Scholar 

  • Usher DA, McHale AH (1976) Hydrolytic stability of helical RNA: a selective advantage for the natural 3′,5′-bond. Proc Natl Acad Sci U S A 73:1149–1153

    PubMed  CAS  Google Scholar 

  • Van Vliet MJ, Visscher J, Scwartz AW (1994) An achiral (oligo) nucleotide analog. J Mol Evol 38:438–442

    Google Scholar 

  • Voet D, Rich A (1970) The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog Nucleic Acid Res Mol Biol 10:183–265

    PubMed  CAS  Google Scholar 

  • Voet A, Schwartz A (1982) Uracil synthesis via hydrogen cyanide oligomerization. Orig Life 12:45–49

    PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1988) An all-purine precursor of nucleic acids. Proc Natl Acad Sci U S A 85:1134–1135

    PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    PubMed  CAS  Google Scholar 

  • Weller DD, Daly DT, Olson WK, Summerton JE (1991) Molecular modeling of acyclic polyamide oligonucleotide analogues. J Org Chem 56:6000–6006

    CAS  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178

    PubMed  CAS  Google Scholar 

  • White HB III (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    PubMed  CAS  Google Scholar 

  • White HB III (1982) Evolution of coenzymes and the origin of pyridine nucleotides. In: Everse J, Anderson B, You K-S (eds) The pyridine nucleotide coenzymes. Academic, New York, pp 1–17

    Google Scholar 

  • Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    PubMed  CAS  Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for gene expression. Harper and Row, New York, p 186

    Google Scholar 

  • Wolfe-Simon F, Davies PCW, Anbar AD (2009) Did nature also choose arsenic? Int J Astrobiol 8:69–74

    CAS  Google Scholar 

  • Wolman Y, Haverland W, Miller S (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc Natl Acad Sci U S A 69:809–811

    PubMed  CAS  Google Scholar 

  • Wu T, Orgel LE (1991) Disulfide-linked oligonucleotide phosphorothioates: novel analogues of nucleic acids. J Mol Evol 32:274–277

    PubMed  CAS  Google Scholar 

  • Yamada H, Okamoto T (1972) Polycyclic N-hetero compounds XIV. Reactions of methylpyridines with formamide. Chem Pharm Bull 20:623

    CAS  Google Scholar 

  • Zhang L, Peritz A, Meggers E (2005) A simple glycol nucleic acid. J Am Chem Soc 127:4174–4175

    PubMed  CAS  Google Scholar 

  • Zubay G (1996) Arguments in favor of an all-purine RNA first. Chemtracts: Biochem Mol Biol 6:251–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. James Cleaves II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cleaves, H.J., Bada, J.L. (2012). The Prebiotic Chemistry of Alternative Nucleic Acids. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_1

Download citation

Publish with us

Policies and ethics