γδ T Cells, Tea and Cancer

  • Jingwei Lu
  • Vincent J. Pompili
  • Hiranmoy Das


Environmental factors play an important role in the development of cancer. Tea, one of the most popular beverages in the world, has shown to have anti-cancer effects as well as have protective effects against cancer development. Recent studies have shown that components present in tea could activate the immune system, particularly γδ T cells, which is an important component of both innate and adaptive immune system. As a first line of defense against tumors, the activation of immune system is important to provide necessary preventive measures against tumor. In this chapter, we focus on the mechanism of γδ T cell-mediated recognition of antigens, and delineate the mechanisms, by which tea product can activate γδ T cells to facilitate cancer prevention activities.


Antigen Recognition Prenyl Pyrophosphate Isoprenoid Biosynthesis Pathway Autologous Chronic Lymphocytic Leukemia Primary Renal Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by National Institutes of Health grants, K01 AR054114 (NIAMS), SBIR R44 HL092706-01 (NHLBI), R21 CA143787 (NCI) and The Ohio State University start-up fund. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.


  1. Adams EJ, Chien YH, Garcia KC (2005) Structure of a gamma delta T cell receptor in complex with the nonclassical MHC T22. Science 308:227–231PubMedCrossRefGoogle Scholar
  2. Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 91:6259–6263PubMedCrossRefGoogle Scholar
  3. Begley M, Gahan CGM, Kollas AK, Hintz M, Hill C, Jomaa H, Eberl M (2004) The interplay between classical and alternative isoprenoid biosynthesis controls gamma delta T cell bioactivity of Listeria monocytogenes. FEBS Lett 561:99–104PubMedCrossRefGoogle Scholar
  4. Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G (2000) Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 373:231–241PubMedCrossRefGoogle Scholar
  5. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29PubMedCrossRefGoogle Scholar
  6. Bonneville M, Scotet E (2006) Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18:539–546PubMedCrossRefGoogle Scholar
  7. Born WK, Reardon CL, O’Brien RL (2006) The function of gammadelta T cells in innate immunity. Curr Opin Immunol 18:31–38PubMedCrossRefGoogle Scholar
  8. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309:264–268PubMedCrossRefGoogle Scholar
  9. Bui JD, Carayannopoulos LN, Lanier LL, Yokoyama WM, Schreiber RD (2006) IFN-dependent down-regulation of the NKG2D ligand H60 on tumors. J Immunol 176:905–913PubMedGoogle Scholar
  10. Bukowski JF, Percival SS (2008) L-theanine intervention enhances human gammadeltaT lymphocyte function. Nutr Rev 66:96–102PubMedCrossRefGoogle Scholar
  11. Bukowski JF, Morita CT, Brenner MB (1999) Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11:57–65PubMedCrossRefGoogle Scholar
  12. Cao W, He W (2005) The recognition pattern of gammadelta T cells. Front Biosci 10:2676–2700PubMedCrossRefGoogle Scholar
  13. Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B, Raso A, Moretta L, Moretta A, Bottino C (2007) Both CD133(+) and CD133(−) medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immunol 37:3190–3196PubMedCrossRefGoogle Scholar
  14. Chien YH, Konigshofer Y (2007) Antigen recognition by gammadelta T cells. Immunol Rev 215:46–58PubMedCrossRefGoogle Scholar
  15. Chien YH, Jores R, Crowley MP (1996) Recognition by gamma/delta T cells. Annu Rev Immunol 14:511–532PubMedCrossRefGoogle Scholar
  16. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133PubMedCrossRefGoogle Scholar
  17. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001a) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93PubMedCrossRefGoogle Scholar
  18. Das H, Wang L, Kamath A, Bukowski JF (2001b) Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 98:1616–1618PubMedCrossRefGoogle Scholar
  19. Das H, Sugita M, Brenner MB (2004) Mechanisms of Vdelta1 gammadelta T cell activation by microbial components. J Immunol 172:6578–6586PubMedGoogle Scholar
  20. Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308PubMedGoogle Scholar
  21. Evans S, Dizeyi N, Abrahamsson PA, Persson J (2009) The effect of a novel botanical agent TBS-101 on invasive prostate cancer in animal models. Anticancer Res 29:3917–3924PubMedGoogle Scholar
  22. Favier B, Espinosa E, Tabiasco J, Dos Santos C, Bonneville M, Valitutti S, Fournie JJ (2003) Uncoupling between immunological synapse formation and functional outcome in human gamma delta T lymphocytes. J Immunol 171:5027–5033PubMedGoogle Scholar
  23. Fisch P, Moris A, Rammensee HG, Handgretinger R (2000) Inhibitory MHC class I receptors on gammadelta T cells in tumour immunity and autoimmunity. Immunol Today 21:187–191PubMedCrossRefGoogle Scholar
  24. Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res 4:30–34PubMedCrossRefGoogle Scholar
  25. Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F, Buhring HJ, Dichgans J, Rammensee HG, Steinle A et al (2003) MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 63:8996–9006PubMedGoogle Scholar
  26. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168PubMedCrossRefGoogle Scholar
  27. Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70:10024–10027PubMedCrossRefGoogle Scholar
  28. Graff JC, Jutila MA (2007) Differential regulation of CD11b on gammadelta T cells and monocytes in response to unripe apple polyphenols. J Leukoc Biol 82:603–607PubMedCrossRefGoogle Scholar
  29. Green AE, Lissina A, Hutchinson SL, Hewitt RE, Temple B, James D, Boulter JM, Price DA, Sewell AK (2004) Recognition of nonpeptide antigens by human V gamma 9 V delta 2 T cells requires contact with cells of human origin. Clin Exp Immunol 136:472–482PubMedCrossRefGoogle Scholar
  30. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737–1740PubMedCrossRefGoogle Scholar
  31. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884PubMedCrossRefGoogle Scholar
  32. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260PubMedCrossRefGoogle Scholar
  33. Halary F, Fournie JJ, Bonneville M (1999) Activation and control of self-reactive gammadelta T cells. Microbes Infect 1:247–253PubMedCrossRefGoogle Scholar
  34. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  35. Holtmeier W, Kabelitz D (2005) gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 86:151–183PubMedCrossRefGoogle Scholar
  36. Hosking D (2006) Pharmacological therapy of Paget’s and other metabolic bone diseases. Bone 38:S3–S7PubMedCrossRefGoogle Scholar
  37. Jomaa H, Feurle J, Luhs K, Kunzmann V, Tony HP, Herderich M, Wilhelm M (1999) Vgamma9/Vdelta2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol Med Microbiol 25:371–378PubMedGoogle Scholar
  38. Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8PubMedCrossRefGoogle Scholar
  39. Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF (2003) Antigens in tea-beverage prime human Vgamma 2Vdelta 2T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci U S A 100:6009–6014PubMedCrossRefGoogle Scholar
  40. Kato Y, Tanaka Y, Tanaka H, Yamashita S, Minato N (2003) Requirement of species-specific interactions for the activation of human gamma delta T cells by pamidronate. J Immunol 170:3608–3613PubMedGoogle Scholar
  41. Khan N, Mukhtar H (2010) Cancer and metastasis: prevention and treatment by green tea. Cancer Metastasis Rev 29:435–445PubMedCrossRefGoogle Scholar
  42. Khan N, Afaq F, Mukhtar H (2008) Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 10:475–510PubMedCrossRefGoogle Scholar
  43. Kubin M, Cassiano L, Chalupny J, Chin W, Cosman D, Fanslow W, Mullberg J, Rousseau AM, Ulrich D, Armitage R (2001) ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur J Immunol 31:1428–1437PubMedCrossRefGoogle Scholar
  44. Kunzmann V, Bauer E, Wilhelm M (1999) Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340:737–738PubMedCrossRefGoogle Scholar
  45. Li H, Lebedeva MI, Llera AS, Fields BA, Brenner MB, Mariuzza RA (1998) Structure of the Vdelta domain of a human gammadelta T-cell antigen receptor. Nature 391:502–506PubMedCrossRefGoogle Scholar
  46. Maeurer MJ, Martin D, Walter W, Liu K, Zitvogel L, Halusczcak K, Rabinowich H, Duquesnoy R, Storkus W, Lotze MT (1996) Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin. J Exp Med 183:1681–1696PubMedCrossRefGoogle Scholar
  47. McVay LD, Carding SR (1999) Generation of human gammadelta T-cell repertoires. Crit Rev Immunol 19:431–460PubMedGoogle Scholar
  48. Mitchell SC, Zhang AQ, Smith RL (2000) Ethylamine in human urine. Clin Chim Acta 302:69–78PubMedCrossRefGoogle Scholar
  49. Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Perigaud C, Peyrottes S, Champagne E (2010) F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. J Immunol 184:6920–6928PubMedCrossRefGoogle Scholar
  50. Morita CT, Jin CG, Sarikonda G, Wang H (2007) Nonpeptide antigens, presentation mechanisms, and immunological memory of human V gamma 2 V delta 2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 215:59–76PubMedCrossRefGoogle Scholar
  51. Narazaki H, Watari E, Shimizu M, Owaki A, Das H, Fukunaga Y, Takahashi H, Sugita M (2003) Perforin-dependent killing of tumor cells by Vgamma1Vdelta1-bearing T-cells. Immunol Lett 86:113–119PubMedCrossRefGoogle Scholar
  52. Nausch N, Cerwenka A (2008) NKG2D ligands in tumor immunity. Oncogene 27:5944–5958PubMedCrossRefGoogle Scholar
  53. Nishimura H, Yajima T, Kagimoto Y, Ohata M, Watase T, Kishihara K, Goshima F, Nishiyama Y, Yoshikai Y (2004) Intraepithelial gamma delta T cells may bridge a gap between innate immunity and acquired immunity to herpes simplex virus type. J Virol 78:4927–4930PubMedCrossRefGoogle Scholar
  54. Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP, Yu MC (2008) Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 88:979–985PubMedGoogle Scholar
  55. Ogawa T, Tsuji-Kawahara S, Yuasa T, Kinoshita S, Chikaishi T, Takamura S, Matsumura H, Seya T, Saga T, Miyazawa M (2011) Natural killer cells recognize friend retrovirus-infected erythroid progenitor cells through NKG2D-RAE-1 interactions in vivo. J Virol 85:5423–5435PubMedCrossRefGoogle Scholar
  56. Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, Kubin M, Cosman D, Ferrone S, Moretta L et al (2002) Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62:6178–6186PubMedGoogle Scholar
  57. Percival SS, Bukowski JF, Milner J (2008) Bioactive food components that enhance gammadelta T cell function may play a role in cancer prevention. J Nutr 138:1–4PubMedGoogle Scholar
  58. Pereira P, Boucontet L (2004) Rates of recombination and chain pair biases greatly influence the primary gammadelta TCR repertoire in the thymus of adult mice. J Immunol 173:3261–3270PubMedGoogle Scholar
  59. Perry CM, Figgitt DP (2004) Zoledronic acid – A review of its use in patients with advanced cancer. Drugs 64:1197–1211PubMedCrossRefGoogle Scholar
  60. Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M, Steinle A, Ghia P, Stella S, Caligaris-Cappio F et al (2004) Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 64:9172–9179PubMedCrossRefGoogle Scholar
  61. Raspollini MR, Castiglione F, Rossi Degl’innocenti D, Amunni G, Villanucci A, Garbini F, Baroni G, Taddei GL (2005) Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol 16:590–596PubMedCrossRefGoogle Scholar
  62. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790PubMedCrossRefGoogle Scholar
  63. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T (2005) Activation of V gamma 9V delta 2T cells by NKG2D. J Immunol 175:2144–2151PubMedGoogle Scholar
  64. Rock EP, Sibbald PR, Davis MM, Chien YH (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328PubMedCrossRefGoogle Scholar
  65. Rowe CA, Nantz MP, Bukowski JF, Percival SS (2007) Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma, delta T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr 26:445–452PubMedGoogle Scholar
  66. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396PubMedCrossRefGoogle Scholar
  67. Sanders JM, Ghosh S, Chan JM, Meints G, Wang H, Raker AM, Song Y, Colantino A, Burzynska A, Kafarski P et al (2004) Quantitative structure-activity relationships for gammadelta T cell activation by bisphosphonates. J Med Chem 47:375–384PubMedCrossRefGoogle Scholar
  68. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, Monsarrat B, Saulquin X, Maillet S, Esteve JP et al (2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22:71–80PubMedCrossRefGoogle Scholar
  69. Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH (2005) Antigen recognition determinants of gamma delta T cell receptors. Science 308:252–255PubMedCrossRefGoogle Scholar
  70. Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM (2010) Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol 177:3169–3179PubMedCrossRefGoogle Scholar
  71. Strong RK (2002) Asymmetric ligand recognition by the activating natural killer cell receptor NKG2D, a symmetric homodimer. Mol Immunol 38:1029–1037PubMedCrossRefGoogle Scholar
  72. Thedrez A, Sabourin C, Gertner J, Devilder MC, Allain-Maillet S, Fournie JJ, Scotet E, Bonneville M (2007) Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue? Immunol Rev 215:123–135PubMedCrossRefGoogle Scholar
  73. Thompson K, Rojas-Navea J, Rogers MJ (2006) Alkylamines cause Vgamma9Vdelta2 T-cell activation and proliferation by inhibiting the mevalonate pathway. Blood 107:651–654PubMedCrossRefGoogle Scholar
  74. Tsao AS, Liu D, Martin J, Tang XM, Lee JJ, El-Naggar AK, Wistuba I, Culotta KS, Mao L, Gillenwater A et al (2009) Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev Res (Phila) 2:931–941CrossRefGoogle Scholar
  75. Tsuge H, Sano S, Hayakawa T, Kakuda T, Unno T (2003) Theanine, gamma-glutamylethylamide, is metabolized by renal phosphate-independent glutaminase. Bba-Gen Subj 1620:47–53CrossRefGoogle Scholar
  76. Vetter CS, Groh V, thor Straten P, Spies T, Brocker EB, Becker JC (2002) Expression of stress-induced MHC class I related chain molecules on human melanoma. J Invest Dermatol 118:600–605PubMedCrossRefGoogle Scholar
  77. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S, Caignard A (2005) Phosphostim-activated gamma delta T cells kill autologous metastatic renal cell carcinoma. J Immunol 174:1338–1347PubMedGoogle Scholar
  78. Wang L, Das H, Kamath A, Bukowski JF (2001) Human V gamma 2V delta 2T cells produce IFN-gamma and TNF-alpha with an on/off/on cycling pattern in response to live bacterial products. J Immunol 167:6195–6201PubMedGoogle Scholar
  79. Watson NFS, Spendlovel I, Madjd Z, McGilvray R, Green AR, Ellis IO, Scholefield JH, Durrant LG (2006) Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 118:1445–1452PubMedCrossRefGoogle Scholar
  80. Wu J, Groh V, Spies T (2002) T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol 169:1236–1240PubMedGoogle Scholar
  81. Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45PubMedCrossRefGoogle Scholar
  82. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213PubMedCrossRefGoogle Scholar
  83. Zhao J, Huang J, Chen H, Cui L, He W (2006) Vdelta1 T cell receptor binds specifically to MHC I chain related A: molecular and biochemical evidences. Biochem Biophys Res Commun 339:232–240PubMedCrossRefGoogle Scholar
  84. Zhou JR, Yu L, Zhong Y, Blackburn GL (2003) Soy phytochemicals and tea bioactive components synergistically inhibit androgen-sensitive human prostate tumors in mice. J Nutr 133:516–521PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Cardiovascular Stem Cell Research Laboratory, The Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Medical CenterColumbusUSA

Personalised recommendations