Skip to main content

γδ T Cells, Tea and Cancer

  • Chapter
  • First Online:
Nutrition, Diet and Cancer

Abstract

Environmental factors play an important role in the development of cancer. Tea, one of the most popular beverages in the world, has shown to have anti-cancer effects as well as have protective effects against cancer development. Recent studies have shown that components present in tea could activate the immune system, particularly γδ T cells, which is an important component of both innate and adaptive immune system. As a first line of defense against tumors, the activation of immune system is important to provide necessary preventive measures against tumor. In this chapter, we focus on the mechanism of γδ T cell-mediated recognition of antigens, and delineate the mechanisms, by which tea product can activate γδ T cells to facilitate cancer prevention activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EJ, Chien YH, Garcia KC (2005) Structure of a gamma delta T cell receptor in complex with the nonclassical MHC T22. Science 308:227–231

    Article  PubMed  CAS  Google Scholar 

  • Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 91:6259–6263

    Article  PubMed  CAS  Google Scholar 

  • Begley M, Gahan CGM, Kollas AK, Hintz M, Hill C, Jomaa H, Eberl M (2004) The interplay between classical and alternative isoprenoid biosynthesis controls gamma delta T cell bioactivity of Listeria monocytogenes. FEBS Lett 561:99–104

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G (2000) Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 373:231–241

    Article  PubMed  CAS  Google Scholar 

  • Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  PubMed  CAS  Google Scholar 

  • Bonneville M, Scotet E (2006) Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18:539–546

    Article  PubMed  CAS  Google Scholar 

  • Born WK, Reardon CL, O’Brien RL (2006) The function of gammadelta T cells in innate immunity. Curr Opin Immunol 18:31–38

    Article  PubMed  CAS  Google Scholar 

  • Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309:264–268

    Article  PubMed  CAS  Google Scholar 

  • Bui JD, Carayannopoulos LN, Lanier LL, Yokoyama WM, Schreiber RD (2006) IFN-dependent down-regulation of the NKG2D ligand H60 on tumors. J Immunol 176:905–913

    PubMed  CAS  Google Scholar 

  • Bukowski JF, Percival SS (2008) L-theanine intervention enhances human gammadeltaT lymphocyte function. Nutr Rev 66:96–102

    Article  PubMed  Google Scholar 

  • Bukowski JF, Morita CT, Brenner MB (1999) Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11:57–65

    Article  PubMed  CAS  Google Scholar 

  • Cao W, He W (2005) The recognition pattern of gammadelta T cells. Front Biosci 10:2676–2700

    Article  PubMed  CAS  Google Scholar 

  • Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B, Raso A, Moretta L, Moretta A, Bottino C (2007) Both CD133(+) and CD133(−) medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immunol 37:3190–3196

    Article  PubMed  CAS  Google Scholar 

  • Chien YH, Konigshofer Y (2007) Antigen recognition by gammadelta T cells. Immunol Rev 215:46–58

    Article  PubMed  CAS  Google Scholar 

  • Chien YH, Jores R, Crowley MP (1996) Recognition by gamma/delta T cells. Annu Rev Immunol 14:511–532

    Article  PubMed  CAS  Google Scholar 

  • Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133

    Article  PubMed  CAS  Google Scholar 

  • Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001a) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93

    Article  PubMed  CAS  Google Scholar 

  • Das H, Wang L, Kamath A, Bukowski JF (2001b) Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 98:1616–1618

    Article  PubMed  CAS  Google Scholar 

  • Das H, Sugita M, Brenner MB (2004) Mechanisms of Vdelta1 gammadelta T cell activation by microbial components. J Immunol 172:6578–6586

    PubMed  CAS  Google Scholar 

  • Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308

    PubMed  CAS  Google Scholar 

  • Evans S, Dizeyi N, Abrahamsson PA, Persson J (2009) The effect of a novel botanical agent TBS-101 on invasive prostate cancer in animal models. Anticancer Res 29:3917–3924

    PubMed  CAS  Google Scholar 

  • Favier B, Espinosa E, Tabiasco J, Dos Santos C, Bonneville M, Valitutti S, Fournie JJ (2003) Uncoupling between immunological synapse formation and functional outcome in human gamma delta T lymphocytes. J Immunol 171:5027–5033

    PubMed  CAS  Google Scholar 

  • Fisch P, Moris A, Rammensee HG, Handgretinger R (2000) Inhibitory MHC class I receptors on gammadelta T cells in tumour immunity and autoimmunity. Immunol Today 21:187–191

    Article  PubMed  CAS  Google Scholar 

  • Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res 4:30–34

    Article  PubMed  CAS  Google Scholar 

  • Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F, Buhring HJ, Dichgans J, Rammensee HG, Steinle A et al (2003) MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 63:8996–9006

    PubMed  CAS  Google Scholar 

  • Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168

    Article  PubMed  CAS  Google Scholar 

  • Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70:10024–10027

    Article  PubMed  CAS  Google Scholar 

  • Graff JC, Jutila MA (2007) Differential regulation of CD11b on gammadelta T cells and monocytes in response to unripe apple polyphenols. J Leukoc Biol 82:603–607

    Article  PubMed  CAS  Google Scholar 

  • Green AE, Lissina A, Hutchinson SL, Hewitt RE, Temple B, James D, Boulter JM, Price DA, Sewell AK (2004) Recognition of nonpeptide antigens by human V gamma 9 V delta 2 T cells requires contact with cells of human origin. Clin Exp Immunol 136:472–482

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260

    Article  PubMed  CAS  Google Scholar 

  • Halary F, Fournie JJ, Bonneville M (1999) Activation and control of self-reactive gammadelta T cells. Microbes Infect 1:247–253

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Holtmeier W, Kabelitz D (2005) gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 86:151–183

    Article  PubMed  CAS  Google Scholar 

  • Hosking D (2006) Pharmacological therapy of Paget’s and other metabolic bone diseases. Bone 38:S3–S7

    Article  PubMed  CAS  Google Scholar 

  • Jomaa H, Feurle J, Luhs K, Kunzmann V, Tony HP, Herderich M, Wilhelm M (1999) Vgamma9/Vdelta2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol Med Microbiol 25:371–378

    PubMed  CAS  Google Scholar 

  • Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8

    Article  PubMed  CAS  Google Scholar 

  • Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF (2003) Antigens in tea-beverage prime human Vgamma 2Vdelta 2T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci U S A 100:6009–6014

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Tanaka Y, Tanaka H, Yamashita S, Minato N (2003) Requirement of species-specific interactions for the activation of human gamma delta T cells by pamidronate. J Immunol 170:3608–3613

    PubMed  CAS  Google Scholar 

  • Khan N, Mukhtar H (2010) Cancer and metastasis: prevention and treatment by green tea. Cancer Metastasis Rev 29:435–445

    Article  PubMed  Google Scholar 

  • Khan N, Afaq F, Mukhtar H (2008) Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 10:475–510

    Article  PubMed  CAS  Google Scholar 

  • Kubin M, Cassiano L, Chalupny J, Chin W, Cosman D, Fanslow W, Mullberg J, Rousseau AM, Ulrich D, Armitage R (2001) ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur J Immunol 31:1428–1437

    Article  PubMed  CAS  Google Scholar 

  • Kunzmann V, Bauer E, Wilhelm M (1999) Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340:737–738

    Article  PubMed  CAS  Google Scholar 

  • Li H, Lebedeva MI, Llera AS, Fields BA, Brenner MB, Mariuzza RA (1998) Structure of the Vdelta domain of a human gammadelta T-cell antigen receptor. Nature 391:502–506

    Article  PubMed  CAS  Google Scholar 

  • Maeurer MJ, Martin D, Walter W, Liu K, Zitvogel L, Halusczcak K, Rabinowich H, Duquesnoy R, Storkus W, Lotze MT (1996) Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin. J Exp Med 183:1681–1696

    Article  PubMed  CAS  Google Scholar 

  • McVay LD, Carding SR (1999) Generation of human gammadelta T-cell repertoires. Crit Rev Immunol 19:431–460

    PubMed  CAS  Google Scholar 

  • Mitchell SC, Zhang AQ, Smith RL (2000) Ethylamine in human urine. Clin Chim Acta 302:69–78

    Article  PubMed  CAS  Google Scholar 

  • Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Perigaud C, Peyrottes S, Champagne E (2010) F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. J Immunol 184:6920–6928

    Article  PubMed  CAS  Google Scholar 

  • Morita CT, Jin CG, Sarikonda G, Wang H (2007) Nonpeptide antigens, presentation mechanisms, and immunological memory of human V gamma 2 V delta 2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 215:59–76

    Article  PubMed  CAS  Google Scholar 

  • Narazaki H, Watari E, Shimizu M, Owaki A, Das H, Fukunaga Y, Takahashi H, Sugita M (2003) Perforin-dependent killing of tumor cells by Vgamma1Vdelta1-bearing T-cells. Immunol Lett 86:113–119

    Article  PubMed  CAS  Google Scholar 

  • Nausch N, Cerwenka A (2008) NKG2D ligands in tumor immunity. Oncogene 27:5944–5958

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Yajima T, Kagimoto Y, Ohata M, Watase T, Kishihara K, Goshima F, Nishiyama Y, Yoshikai Y (2004) Intraepithelial gamma delta T cells may bridge a gap between innate immunity and acquired immunity to herpes simplex virus type. J Virol 78:4927–4930

    Article  PubMed  CAS  Google Scholar 

  • Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP, Yu MC (2008) Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 88:979–985

    PubMed  CAS  Google Scholar 

  • Ogawa T, Tsuji-Kawahara S, Yuasa T, Kinoshita S, Chikaishi T, Takamura S, Matsumura H, Seya T, Saga T, Miyazawa M (2011) Natural killer cells recognize friend retrovirus-infected erythroid progenitor cells through NKG2D-RAE-1 interactions in vivo. J Virol 85:5423–5435

    Article  PubMed  CAS  Google Scholar 

  • Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, Kubin M, Cosman D, Ferrone S, Moretta L et al (2002) Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62:6178–6186

    PubMed  CAS  Google Scholar 

  • Percival SS, Bukowski JF, Milner J (2008) Bioactive food components that enhance gammadelta T cell function may play a role in cancer prevention. J Nutr 138:1–4

    PubMed  CAS  Google Scholar 

  • Pereira P, Boucontet L (2004) Rates of recombination and chain pair biases greatly influence the primary gammadelta TCR repertoire in the thymus of adult mice. J Immunol 173:3261–3270

    PubMed  CAS  Google Scholar 

  • Perry CM, Figgitt DP (2004) Zoledronic acid – A review of its use in patients with advanced cancer. Drugs 64:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M, Steinle A, Ghia P, Stella S, Caligaris-Cappio F et al (2004) Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 64:9172–9179

    Article  PubMed  CAS  Google Scholar 

  • Raspollini MR, Castiglione F, Rossi Degl’innocenti D, Amunni G, Villanucci A, Garbini F, Baroni G, Taddei GL (2005) Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol 16:590–596

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  PubMed  CAS  Google Scholar 

  • Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T (2005) Activation of V gamma 9V delta 2T cells by NKG2D. J Immunol 175:2144–2151

    PubMed  CAS  Google Scholar 

  • Rock EP, Sibbald PR, Davis MM, Chien YH (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328

    Article  PubMed  CAS  Google Scholar 

  • Rowe CA, Nantz MP, Bukowski JF, Percival SS (2007) Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma, delta T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr 26:445–452

    PubMed  Google Scholar 

  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Sanders JM, Ghosh S, Chan JM, Meints G, Wang H, Raker AM, Song Y, Colantino A, Burzynska A, Kafarski P et al (2004) Quantitative structure-activity relationships for gammadelta T cell activation by bisphosphonates. J Med Chem 47:375–384

    Article  PubMed  CAS  Google Scholar 

  • Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, Monsarrat B, Saulquin X, Maillet S, Esteve JP et al (2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22:71–80

    Article  PubMed  CAS  Google Scholar 

  • Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH (2005) Antigen recognition determinants of gamma delta T cell receptors. Science 308:252–255

    Article  PubMed  CAS  Google Scholar 

  • Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM (2010) Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol 177:3169–3179

    Article  PubMed  CAS  Google Scholar 

  • Strong RK (2002) Asymmetric ligand recognition by the activating natural killer cell receptor NKG2D, a symmetric homodimer. Mol Immunol 38:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Thedrez A, Sabourin C, Gertner J, Devilder MC, Allain-Maillet S, Fournie JJ, Scotet E, Bonneville M (2007) Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue? Immunol Rev 215:123–135

    Article  PubMed  CAS  Google Scholar 

  • Thompson K, Rojas-Navea J, Rogers MJ (2006) Alkylamines cause Vgamma9Vdelta2 T-cell activation and proliferation by inhibiting the mevalonate pathway. Blood 107:651–654

    Article  PubMed  CAS  Google Scholar 

  • Tsao AS, Liu D, Martin J, Tang XM, Lee JJ, El-Naggar AK, Wistuba I, Culotta KS, Mao L, Gillenwater A et al (2009) Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev Res (Phila) 2:931–941

    Article  CAS  Google Scholar 

  • Tsuge H, Sano S, Hayakawa T, Kakuda T, Unno T (2003) Theanine, gamma-glutamylethylamide, is metabolized by renal phosphate-independent glutaminase. Bba-Gen Subj 1620:47–53

    Article  CAS  Google Scholar 

  • Vetter CS, Groh V, thor Straten P, Spies T, Brocker EB, Becker JC (2002) Expression of stress-induced MHC class I related chain molecules on human melanoma. J Invest Dermatol 118:600–605

    Article  PubMed  CAS  Google Scholar 

  • Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S, Caignard A (2005) Phosphostim-activated gamma delta T cells kill autologous metastatic renal cell carcinoma. J Immunol 174:1338–1347

    PubMed  CAS  Google Scholar 

  • Wang L, Das H, Kamath A, Bukowski JF (2001) Human V gamma 2V delta 2T cells produce IFN-gamma and TNF-alpha with an on/off/on cycling pattern in response to live bacterial products. J Immunol 167:6195–6201

    PubMed  CAS  Google Scholar 

  • Watson NFS, Spendlovel I, Madjd Z, McGilvray R, Green AR, Ellis IO, Scholefield JH, Durrant LG (2006) Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 118:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Groh V, Spies T (2002) T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol 169:1236–1240

    PubMed  CAS  Google Scholar 

  • Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Huang J, Chen H, Cui L, He W (2006) Vdelta1 T cell receptor binds specifically to MHC I chain related A: molecular and biochemical evidences. Biochem Biophys Res Commun 339:232–240

    Article  PubMed  CAS  Google Scholar 

  • Zhou JR, Yu L, Zhong Y, Blackburn GL (2003) Soy phytochemicals and tea bioactive components synergistically inhibit androgen-sensitive human prostate tumors in mice. J Nutr 133:516–521

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grants, K01 AR054114 (NIAMS), SBIR R44 HL092706-01 (NHLBI), R21 CA143787 (NCI) and The Ohio State University start-up fund. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmoy Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lu, J., Pompili, V.J., Das, H. (2012). γδ T Cells, Tea and Cancer. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_8

Download citation

Publish with us

Policies and ethics