Skip to main content

Dietary Phytochemicals as Epigenetic Modulators in Cancer

  • Chapter
  • First Online:
Book cover Nutrition, Diet and Cancer

Abstract

Epigenetics refers to heritable changes in gene expression that are not attributable to changes in DNA sequence, but rather depend on alterations in DNA methylation, chromatin structure or microRNA profiles. Although epigenetic changes are heritable in somatic cells, these modifications are potentially reversible and make them attractive and promising targets in the prevention and therapy of cancer. Dietary phytochemicals, especially present in fruits, vegetables and beverages have recently shown considerable promise in affecting gene expression via reversible epigenetic mechanisms. These agents include tea polyphenols, genistein, curcumin, sulforaphane, isothiocynates, lycopene, resveratrol, quercetin, indol-3-carbinol, ellagitannin and organosulfur compounds. This chapter discusses the impact of environment, lifestyle and dietary factors on epigenetic alterations and presents considerable evidence that modulation of epigenetic targets by dietary phytochemicals is associated with the prevention and therapy of cancer. This chapter also emphasizes that an increased understanding of the anticancer effects of dietary phytochemicals offer new epigenetic targets and promising agents with more opportunities for prevention, and perhaps therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akt:

v-akt murine thymoma viral oncogene homolog 1

AM:

allyl mercaptan

AP-1:

Activator Protein-1

AR:

androgen receptor

Bax:

BCL2-associated X protein

Bcl2:

B-cell CLL/lymphoma 2

Bcl-xL:

B-cell lymphoma-extra large

Bmi-1:

B-cell-specific Moloney murine leukemia virus integration site 1

BRCA1:

breast cancer 1 early onset

CBP:

CREB-binding protein

CCND2:

cyclin D2

Cdc25A:

cell division cycle 25 homolog A

Cdk:

cyclin-dependent kinase

CDX-2:

caudal-related homeodomain protein 2

c-Kit:

v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog

COMT:

catechol-O-methyltransferase

COX-2:

cyclooxygenase-2

CYLD:

cylindromatosis (turban tumor syndrome)

DADS:

diallyl disulfide

DAS:

diallyl sulfide

DATS:

diallyl trisulfide

DHFR:

dihydrofolate reductase

DMBA:

7,12-dimethylbenz(a)anthracene

DNMT:

DNA methyltransferase

DNMT-3 L:

DNA (cytosine-5)-methyltransferase 3-like

E2F:

E2F transcription factor

EC:

[−]-epicatechin

ECG:

[−]-epicatechin-3-gallate

EGC:

[−]-epigallocatechin

EGCG:

[−]-epigallocatechin-3-gallate

EGFR:

epidermal growth factor receptor

ER:

estrogen receptor

ERβ:

estrogen receptor beta

ERBB2:

human epidermal growth factor receptor 2

ERα:

estrogen receptor alpha

EZH-2:

enhancer of zeste homolog 2

FOXO3a:

forkhead box protein O3

GCN5:

SAGA complex histone acetyltransferase catalytic subunit Gcn5

GSTP1:

glutathione-S-transferase pi 1

HATs:

histone acetyl transferases

HDACs:

histone deacetylase

HER-2:

human epidermal growth factor receptor 2

HIF-1 α:

hypoxia inducible factor 1 alpha subunit

HKMTs:

histone lysine methyltransferases

hMLH1:

human mutL homolog 1

HOX family proteins:

homeobox family proteins

HSP90:

heat shock protein 90

hTERT:

human telomerase reverse transcriptase

IP-10:

TNF-induced interferon-gamma-inducible protein 10

K:

Lysine

LEF:

lymphoid enhancer factor

LOI:

loss of imprinting

MBD:

methylated DNA binding domain proteins

MCL1:

induced myeloid leukemia cell differentiation protein Mcl-1

MCM-2:

minichromosome maintenance gene

MGMT-O(6):

methylguanine-DNA methyltransferase

MIP-2:

macrophage inflammatory protein 2

miRNA:

microRNA

MMP:

matrix metalloproteinase

MTA-2:

metastasis associated 1 family member 2

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

Notch1:

notch homolog 1 translocation-associated (Drosophila)

NuRD:

nucleosome remodeling complex

OSCs:

organosulfur compounds

p16INK4a:

cyclin-dependent kinase 4 inhibitor A

p21WAF1/CIP1:

cyclin-dependent kinase inhibitor 1A

p53:

tumor protein 53

PARP:

Poly ADP-ribose polymerase

PCAF:

K(lysine) acetyltransferase 2B

PcG:

polycomb group proteins

PDCD4:

programmed cell death 4

PEITC:

phenethyl isothiocyanate

PRMTs:

arginine methyltransferases

PRPS1:

phosphoribosyl pyrophosphate synthetase 1

PTEN:

phosphatase and tensin homolog deleted on chromosome 10

RARβ2:

retinoic acid receptor beta 2

R:

Arginine

RAS:

rat sarcoma transforming oncogene

RASSF1A:

RAS association domain family 1A

RECK:

reversion-inducing cysteine-rich protein with Kazal motifs repressive complex 3

RXR alpha:

retinoid X receptor alpha

SAH:

S-adenosyl-L-homocysteine

SAM:

S-adenosyl methionine

SAMC:

S-allylmercaptocysteine

SIRT1:

sirtuin (silent mating type information regulation 2 homolog) 1

SLC16A1:

solute carrier family 16 member 1

SNX19:

sorting nexin-19

SP1:

transcription Factor Sp1

TCF:

multiple T-cell factor

TGFBR2:

transforming growth factor beta receptor II

TGF-β:

transforming growth factor beta

TIMP-2:

tissue inhibitor of metalloproteinase 2

TTK:

phosphotyrosine picked threonine-protein kinase

VEGF:

vascular endothelial cell growth factor

ZBTB10:

zinc finger and BTB domain containing 10

ZEB1:

zinc finger E-box binding homeobox 1

ZNF513:

zinc finger protein 513

References

  • Ali S, Ahmad A, Banerjee S, Padhye S et~al (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70(9):3606–3617

    Article  PubMed  CAS  Google Scholar 

  • Ariga T, Seki T (2006) Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors 26(2):93–103

    Article  PubMed  CAS  Google Scholar 

  • Attig L, Gabory A, Junien C (2010) Symposium 2: modern approaches to nutritional research challenges nutritional developmental epigenomics: immediate and long-lasting effects in the conference on ‘Over- and undernutrition: challenges and approaches. Proc Nutr Soc 69:221–231

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Adhikary G, Eckert RL (2010) The Bmi-1 polycomb protein antagonizes the(-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis 31(3):496–503

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, Swaminathan V et~al (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279(49):51163–51171

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Kong D, Wang Z, Bao B et~al (2011) Attenuation of multi-targeted proliferation-linked signaling by 3,3′-diindolylmethane (DIM): from bench to clinic. Mutat Res 728(1–2):47–66

    PubMed  CAS  Google Scholar 

  • Basak S, Pookot D, Noonan EJ, Dahiya R (2008) Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther 7(10):3195–3202

    Article  PubMed  CAS  Google Scholar 

  • Berletch JB, Liu C, Love WK, Andrews LG et~al (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103(2):509–519

    Article  PubMed  CAS  Google Scholar 

  • Bora-Tatar G, Dayangaç-Erden D, Demir AS, Dalkara S et~al (2009) Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: activity and docking studies. Bioorg Med Chem 17(14):5219–5228

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shu W, Chen W, Wu Q et~al (2007) Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 101(6):427–433

    Article  PubMed  CAS  Google Scholar 

  • Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12(1):87–97

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, Park JH, Kim YJ (2007) Epigenomics: novel aspect of genomic regulation. J Biochem Mol Biol 40(2):151–155

    Article  PubMed  CAS  Google Scholar 

  • Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269(2):291–304

    Article  PubMed  CAS  Google Scholar 

  • Dehan P, Kustermans G, Guenin S, Horion J et~al (2009) DNA methylation and cancer diagnosis: new methods and applications. Expert Rev Mol Diagn 9(7):651–657

    Article  PubMed  CAS  Google Scholar 

  • Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO rep 12(7):647–656

    Article  PubMed  CAS  Google Scholar 

  • Druesne N, Pagniez A, Mayeur C, Thomas M et~al (2004) Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 25(7):1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Fang MZ, Wang Y, Ai N, Hou Z et~al (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570

    PubMed  CAS  Google Scholar 

  • Fang MZ, Chen D, Sun Y, Jin Z (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19 Pt 1):7033–7041

    Article  PubMed  CAS  Google Scholar 

  • Fix LN, Shah M, Efferth T, Farwell MA et~al (2010) MicroRNA expression profile of MCF-7 human breast cancer cells and the effect of green tea polyphenon-60. Cancer Genomics Proteomics 7(5):261–277

    PubMed  CAS  Google Scholar 

  • Gao Z, Xu Z, Hung MS, Lin YC et~al (2009) Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res 29(6):2025–2030

    PubMed  CAS  Google Scholar 

  • Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  • Gibellini L, Pinti M, Nasi M, Montagna JP et~al (2011) Quercetin and cancer chemoprevention. Evid Based Complement Altern Med 2011:591356

    Article  Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 91(4):317–331

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  PubMed  CAS  Google Scholar 

  • Gu B, Ding Q, Xia G, Fang Z (2009) EGCG inhibits growth and induces apoptosis in renal cell carcinoma through TFPI-2 overexpression. Oncol Rep 21(3):635–640

    PubMed  CAS  Google Scholar 

  • Heber D (2008) Multi-targeted therapy of cancer by ellagitannins. Cancer Lett 269(2):262–268

    Article  PubMed  CAS  Google Scholar 

  • Hong T, Nakagawa T, Pan W, Kim MY et~al (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317(1):259–264

    Article  PubMed  CAS  Google Scholar 

  • Issa JP, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15(12):3938–3946

    Article  PubMed  CAS  Google Scholar 

  • Izzotti A, Calin GA, Steele VE, Cartiglia C et~al (2010a) Chemoprevention of cigarette smoke–induced alterations of microRNA expression in rat lungs. Cancer Prev Res (Phila) 3(1):62–72

    Article  CAS  Google Scholar 

  • Izzotti A, Larghero P, Cartiglia C, Longobardi M et~al (2010b) Modulation of microRNA expression by budesonide, phenethyl isothiocyanate and cigarette smoke in mouse liver and lung. Carcinogenesis 31(5):894–901

    Article  PubMed  CAS  Google Scholar 

  • Jelinic P, Shaw P (2007) Loss of imprinting and cancer. J Pathol 211(3):261–268

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Zou X, Feng X (2010) 3,3′-Diindolylmethane negatively regulates Cdc25A and induces a G2/M arrest by modulation of microRNA 21 in human breast cancer cells. Anticancer Drugs 21(9):814–822

    Article  PubMed  CAS  Google Scholar 

  • Jones PA (2002) DNA methylation and cancer. Oncogene 21(35):5358–5360

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Chen J, Shi Y, Jia J et~al (2005) Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 69(8):1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Long NK, Makita H, Toida M et~al (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99(4):647–654

    Article  PubMed  CAS  Google Scholar 

  • Kikuno N, Shiina H, Urakami S, Kawamoto K et~al (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123(3):552–560

    Article  PubMed  CAS  Google Scholar 

  • King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49(1):36–45

    Article  PubMed  CAS  Google Scholar 

  • Kupchella CE (1986) Environmental factors in cancer etiology. Semin Oncol Nurs 2(3):161–169

    Article  PubMed  CAS  Google Scholar 

  • Lan J, Hua S, He X, Zhang Y (2010) DNA methyltransferases and methyl-binding proteins of mammals. Acta Biochim Biophys Sin 42(4):243–252

    Article  PubMed  CAS  Google Scholar 

  • Lea MA, Randolph VM, Patel M (1999) Increased acetylation of histones induced by diallyl disulfide and structurally related molecules. Int J Oncol 15(2):347–352

    PubMed  CAS  Google Scholar 

  • Lea MA, Randolph VM, Lee JE, des Bordes C (2001) Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate. Int J Cancer 92(6):784–789

    Article  PubMed  CAS  Google Scholar 

  • Lea MA, Rasheed M, Randolph VM, Khan F et~al (2002) Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr Cancer 43(1):90–102

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Chen YR, Tseng TH (2011) Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells. Oncol Rep 25(2):583–591

    Article  PubMed  CAS  Google Scholar 

  • Li Y, VandenBoom TG 2nd, Kong D, Wang Z et~al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li X, Guo B (2010a) Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res 70(2):646–654

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Vandenboom TG 2nd, Wang Z, Kong D et~al (2010b) miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 70(4):1486–1495

    Article  PubMed  CAS  Google Scholar 

  • Lin SC, Li WC, Shih JW, Hong KF et~al (2006) The tea polyphenols EGCG and EGC repress mRNA expression of human telomerase reverse transcriptase (hTERT) in carcinoma cells. Cancer Lett 236(1):80–88

    Article  PubMed  CAS  Google Scholar 

  • Liu HL, Chen Y, Cui GH, Zhou JF (2005) Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol Sin 26(5):603–609

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Xie Z, Jones W, Pavlovicz RE et~al (2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19(3):706–709

    Article  PubMed  Google Scholar 

  • Macaluso M, Paggi MG, Giordano A (2003) Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene 22(42):6472–6478

    Article  PubMed  CAS  Google Scholar 

  • Majid S, Kikuno N, Nelles J, Noonan E et~al (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68(8):2736–2744

    Article  PubMed  CAS  Google Scholar 

  • Majid S, Dar AA, Ahmad AE, Hirata H et~al (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670

    Article  PubMed  CAS  Google Scholar 

  • Majid S, Dar AA, Shahryari V, Hirata H et~al (2010a) Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 116(1):66–76

    PubMed  CAS  Google Scholar 

  • Majid S, Dar AA, Saini S, Chen Y et~al (2010b) Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res 70(7):2809–2818

    Article  PubMed  CAS  Google Scholar 

  • Marcu MG, Jung YJ, Lee S, Chung EJ et~al (2006) Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2(2):169–174

    Article  PubMed  CAS  Google Scholar 

  • Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15(2):293–304

    Article  PubMed  CAS  Google Scholar 

  • Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5(7):e11457

    Article  PubMed  Google Scholar 

  • Mudduluru G, George-William JN, Muppala S, Asangani IA et~al (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31(3):185–197

    Article  PubMed  CAS  Google Scholar 

  • Murugan RS, Vinothini G, Hara Y, Nagini S (2009) Black tea polyphenols target matrix metalloproteinases, RECK, proangiogenic molecules and histone deacetylase in a rat hepatocarcinogenesis model. Anticancer Res 29(6):2301–2305

    PubMed  CAS  Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64(16):5767–5774

    Article  PubMed  CAS  Google Scholar 

  • Myzak MC, Hardin K, Wang R, Dashwood RH et~al (2006a) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27(4):811–819

    Article  PubMed  CAS  Google Scholar 

  • Myzak MC, Dashwood WM, Orner GA, Ho E et~al (2006b) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20(3):506–508

    PubMed  CAS  Google Scholar 

  • Myzak MC, Tong P, Dashwood WM, Dashwood RH et~al (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232(2):227–234

    CAS  Google Scholar 

  • Navarro-Perán E, Cabezas-Herrera J, del Campo LS, Rodríguez-López JN (2007) Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate. Int J Biochem Cell Biol 39(12):2215–2225

    Article  PubMed  Google Scholar 

  • Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126(11):2520–2533

    PubMed  CAS  Google Scholar 

  • Parker LP, Taylor DD, Kesterson J, Metzinger DS et~al (2009) Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol 30(6):616–621

    PubMed  CAS  Google Scholar 

  • Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6(3):1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Priyadarsini RV, Vinothini G, Murugan RS, Manikandan P et~al (2011) The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutr Cancer 63(2):218–226

    Article  PubMed  CAS  Google Scholar 

  • Qin W, Zhu W, Shi H, Hewett JE et~al (2009) Soy isoflavones have an anti-estrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer 61(2):238–244

    Article  PubMed  CAS  Google Scholar 

  • Ran ZH, Zou J, Xiao SD (2005) Experimental study on anti-neoplastic activity of epigallocatechin-3-gallate to digestive tract carcinomas. Chin Med J (Engl) 118(16):1330–1337

    CAS  Google Scholar 

  • Ruiz PA, Braune A, Hölzlwimmer G, Quintanilla-Fend L et~al (2007) Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr 137(5):1208–1215

    PubMed  CAS  Google Scholar 

  • Savouret JF, Quesne M (2002) Resveratrol and cancer: a review. Biomed Pharmacother 56(2):84–87

    Article  PubMed  CAS  Google Scholar 

  • Sawan C, Herceg Z (2010) Histone modifications and cancer. Adv Genet 70:57–85

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui IA, Adhami VM, Saleem M, Mukhtar H (2006) Beneficial effects of tea and its polyphenols against prostate cancer. Mol Nutr Food Res 50(2):130–143

    Article  PubMed  CAS  Google Scholar 

  • Stefanska B, Rudnicka K, Bednarek A, Fabianowska-Majewska K (2010) Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol 638(1–3):47–53

    Article  PubMed  CAS  Google Scholar 

  • Stein CJ, Colditz GA (2004) Modifiable risk factors for cancer. Br J Cancer 90(2):299–303

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Estrov Z, Ji Y, Coombes KR et~al (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7(3):464–473

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Cong R, Yan H, Gu H et~al (2009) Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep 22(3):563–567

    PubMed  CAS  Google Scholar 

  • Tan S, Wang C, Lu C, Zhao B et~al (2008) Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy 55(1):6–10

    Article  PubMed  Google Scholar 

  • Teiten MH, Eifes S, Dicato M, Diederich M (2010) Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins 2(1):128–162

    Article  PubMed  CAS  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S et~al (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 80(12):2057–2065

    Article  PubMed  CAS  Google Scholar 

  • Traka M, Gasper AV, Smith JA, Hawkey CJ et~al (2005) Transcriptome analysis of human colon Caco-2 cells exposed to sulforaphane. J Nutr 135(8):1865–1872

    PubMed  CAS  Google Scholar 

  • Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21(2):140–146

    Article  PubMed  CAS  Google Scholar 

  • Volate SR, Muga SJ, Issa AY, Nitcheva D et~al (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48(10):920–933

    Article  PubMed  CAS  Google Scholar 

  • Wang LG, Beklemisheva A, Liu XM, Ferrari AC et~al (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46(1):24–31

    Article  PubMed  CAS  Google Scholar 

  • Wang RH, Zheng Y, Kim HS, Xu X et~al (2008) Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis. Mol Cell 32(1):11–20

    Article  PubMed  Google Scholar 

  • Wen XY, Wu SY, Li ZQ, Liu ZQ et~al (2009) Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of miRNAs in HepG2 cancer cells. Phytother Res 23(6):778–784

    Article  PubMed  CAS  Google Scholar 

  • Xiao GS, Jin YS, Lu QY, Zhang ZF et~al (2006) Annexin-I as a potential target for green tea extract induced actin remodeling. Int J Cancer 120(1):111–120

    Article  Google Scholar 

  • Yang J, Cao Y, Sun J, Zhang Y (2010) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol 27(4):1114–1118

    Article  PubMed  CAS  Google Scholar 

  • Yuasa Y, Nagasaki H, Akiyama Y, Sakai H et~al (2005) Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. Carcinogenesis 26(1):193–200

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang T, Ti X, Shi J et~al (2010) Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun 399(1):1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The original work from author’s laboratory outlined in this review was supported by United States Public Health Service Grants RO1CA108512, RO1CA115491 and RO1AT002709. We apologize to those investigators whose original work could not be cited owing to the space limitations.

Conflict of interest : The authors have no competing interest

Dr Sanjay Gupta is Carter Kissell Associate Professor & Research Director in the Department of Urology and holds secondary appointment in the Department of Nutrition at Case Western Reserve University and Division of General Medical Sciences at Case Comprehensive Cancer Center, Cleveland, Ohio, USA.

Dr Vijay S Thakur is Senior Research Associate in the Department of Urology at Case Western Reserve University, Cleveland, Ohio, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thakur, V.S., Gupta, S. (2012). Dietary Phytochemicals as Epigenetic Modulators in Cancer. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_19

Download citation

Publish with us

Policies and ethics