Land Plant RNA Editing or: Don’t Be Fooled by Plant Organellar DNA Sequences

  • Sabrina Finster
  • Julia Legen
  • Yujiao Qu
  • Christian Schmitz-Linneweber
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 35)


“It seems likely that most if not all the genetic information in any organism is carried by nucleic acid – usually by DNA […].” Plant organellar genomes have a spelling problem. If the genome were a book, many words with “U”s (uridines) would be spelled with “C”s (cytidines) instead, and in certain plant species, the reverse would also be seen, with Cs replaced by Us. However, plants change these “mistakes” at the RNA level, correcting U to C and C to U at non-random positions, via a phenomenon called RNA editing. We hope Francis Crick would have forgiven us for messing up the above quote from his 1962 Nobel Laureate acceptance speech. You can return the sentence to its original meaning easily by following the rules of plant organellar RNA editing. However, even when spelled right, the statement still has a hole in it, maybe one that Francis Crick anticipated and thus started the sentence with, “It seems likely….” Because here’s the rub: Organellar genetic information cannot be read the easy way, by identifying open reading frames based on start and stop codons and predicting the protein sequences based on codons. Instead, it is far better to read the RNA itself or, better yet in experimental terms, look at the cDNA.

In this review, we will attempt to summarize the state of knowledge regarding RNA editing in plant organelles. We will mostly focus on the mechanistic aspects of RNA editing, with considerable space devoted to our understanding of editing site recognition. Following that, and at the center of this review, we will examine the latest developments in our understanding of the editing machinery. In the end, we will dare to take a quick look at some of the reasons behind the seemingly futile process of plant organellar RNA editing.


Editing Site Cytidine Deaminase Editing Event Editing Activity Organellar Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


3D –



Cytoplasmic male sterility;

cpRNPs –

Chloroplast ribonucleoproteins;


Chloroplast respiratory reduction;


Cytidine-to-uridine recognizing editor;


Ethyl methane sulfonate;


The organelle genome database;


Mitochondrial editing factor;


NAD(P)H dehydrogenase;

OGR1 –

Opaque and growth retardation 1;


Pentatricopeptide repeat;


Predictive RNA editors for plants;


Plant RNA editing prediction and analysis computer tool;


RNA Editing site prediction by Genetic Algorithm Learning;


RNA editing sites of land plant organelles on protein three-dimensional structures;


RNA-recognition motif;


Tetratri­copeptide repeat;

WT –

Wild type



The authors apologize for the many studies on organellar RNA editing that were not discussed and cited here due to space limitations. Support by the DFG to CSL (Emmy Noether stipend) is gratefully acknowledged.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Araya A, Domec C, Begu D, Litvak S (1992) An in vitro system for the editing of ATP synthase subunit 9 mRNA using wheat mitochondrial extracts. Proc Natl Acad Sci USA 89:1040–1044PubMedCrossRefGoogle Scholar
  3. Aubourg S, Boudet N, Kreis M, Lecharny A (2000) In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol Biol 42:603–613PubMedCrossRefGoogle Scholar
  4. Barkan A, Walker M, Nolasco M, Johnson D (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J 13:3170–3181PubMedGoogle Scholar
  5. Bass BL (2001) RNA editing. Oxford University Press, OxfordGoogle Scholar
  6. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846PubMedCrossRefGoogle Scholar
  7. Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A (2008) The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol Cell Biol 28:5337–5347PubMedCrossRefGoogle Scholar
  8. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826PubMedCrossRefGoogle Scholar
  9. Bentolila S, Elliott LE, Hanson MR (2008) Genetic architecture of mitochondrial editing in Arabidopsis thaliana. Genetics 178:1693–1708PubMedCrossRefGoogle Scholar
  10. Bentolila S, Knight W, Hanson M (2010) Natural variation in Arabidopsis leads to the identification of REME1, a pentatricopeptide repeat-DYW protein controlling the editing of mitochondrial transcripts. Plant Physiol 154:1966–1982PubMedCrossRefGoogle Scholar
  11. Blanc V, Davidson NO (2010) APOBEC-1-mediated RNA editing. Wiley Interdiscip Rev Syst Biol Med 2:594–602PubMedCrossRefGoogle Scholar
  12. Bock R (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82:549–557PubMedCrossRefGoogle Scholar
  13. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106PubMedCrossRefGoogle Scholar
  14. Bock R, Kössel H, Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J 13:4623–4628PubMedGoogle Scholar
  15. Bock R, Hermann M, Kössel H (1996) In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J 15:5052–5059PubMedGoogle Scholar
  16. Bolle N, Kempken F (2006) Mono- and dicotyledonous plant-specific RNA editing sites are correctly edited in both in organello systems. FEBS Lett 580:4443–4448PubMedCrossRefGoogle Scholar
  17. Cai W, Ji D, Peng L, Guo J, Ma J, Zou M, Lu C, Zhang L (2009) LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant Physiol 150:1260–1271PubMedCrossRefGoogle Scholar
  18. Chargaff E (1977) Voices in the Labyrinth: nature, man and science. Seabury Press, New YorkGoogle Scholar
  19. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90PubMedCrossRefGoogle Scholar
  20. Chateigner-Boutin AL, Hanson MR (2002) Cross-competition in transgenic chloroplasts expressing single editing sites reveals shared cis elements. Mol Cell Biol 22:8448–8456PubMedCrossRefGoogle Scholar
  21. Chateigner-Boutin AL, Hanson MR (2003) Developmental co-variation of RNA editing extent of plastid editing sites exhibiting similar cis-­elements. Nucleic Acids Res 31:2586–2594PubMedCrossRefGoogle Scholar
  22. Chateigner-Boutin AL, Ramos-Vega M, Guevara-Garcia A, Andres C, de la Luz Gutierrez-Nava M, Cantero A, Delannoy E, Jimenez LF, Lurin C, Small I, Leon P (2008) CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J 56:590–602PubMedCrossRefGoogle Scholar
  23. Chaudhuri S, Maliga P (1996) Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J 15:5958–5964PubMedGoogle Scholar
  24. Chaudhuri S, Carrer H, Maliga P (1995) Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids. EMBO J 14:2951–2957PubMedGoogle Scholar
  25. Choury D, Farre JC, Jordana X, Araya A (2004) Different patterns in the recognition of editing sites in plant mitochondria. Nucleic Acids Res 32:6397–6406PubMedCrossRefGoogle Scholar
  26. Coffin JW, Dhillon R, Ritzel RG, Nargang FE (1997) The Neurospora crassa cya-5 nuclear gene encodes a protein with a region of homology to the Sacharomyces cerevisiae PET309 protein and is required in a post-transcriptional step for the expression of the mitochondrially encoded COXI protein. Curr Genet 32:273–280PubMedCrossRefGoogle Scholar
  27. Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666PubMedCrossRefGoogle Scholar
  28. Cuenca A, Petersen G, Seberg O, Davis JI, Stevenson DW (2010) Are substitution rates and RNA editing correlated? BMC Evol Biol 10:349PubMedGoogle Scholar
  29. Cui L, Veeraraghavan N, Richter A, Wall K, Jansen RK, Leebens-Mack J, Makalowska I, dePamphilis CW (2006) ChloroplastDB: the chloroplast genome database. Nucleic Acids Res 34:D692–D696PubMedCrossRefGoogle Scholar
  30. Cummings MP, Myers DS (2004) Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA. BMC Bioinformatics 5:132PubMedCrossRefGoogle Scholar
  31. Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647PubMedCrossRefGoogle Scholar
  32. Delannoy E, Le Ret M, Faivre-Nitschke E, Estavillo GM, Bergdoll M, Taylor NL, Pogson BJ, Small I, Imbault P, Gualberto JM (2009) Arabidopsis tRNA adenosine deaminase arginine edits the wobble nucleotide of chloroplast tRNAArg (ACG) and is essential for efficient chloroplast translation. Plant Cell 21:2058–2071PubMedCrossRefGoogle Scholar
  33. Doniwa Y, Ueda M, Ueta M, Wada A, Kadowaki K, Tsutsumi N (2010) The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Gene 454:39–46PubMedCrossRefGoogle Scholar
  34. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205PubMedCrossRefGoogle Scholar
  35. Du P, Li Y (2008) Prediction of C-to-U RNA editing sites in plant mitochondria using both biochemical and evolutionary information. J Theor Biol 253:579–586PubMedCrossRefGoogle Scholar
  36. Du P, Jia L, Li Y (2009) CURE-Chloroplast: a chloroplast C-to-U RNA editing predictor for seed plants. BMC Bioinformatics 10:135PubMedCrossRefGoogle Scholar
  37. Duff RJ, Moore FB (2005) Pervasive RNA editing among hornwort rbcL transcripts except Leiosporoc­eros. J Mol Evol 61:571–578PubMedCrossRefGoogle Scholar
  38. Faivre-Nitschke SE, Grienenberger JM, Gualberto JM (1999) A prokaryotic-type cytidine deaminase from Arabidopsis thaliana gene expression and functional characterization. Eur J Biochem 263:896–903PubMedCrossRefGoogle Scholar
  39. Farre JC, Araya A (2001) Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucleic Acids Res 29:2484–2491PubMedCrossRefGoogle Scholar
  40. Farre JC, Leon G, Jordana X, Araya A (2001) cis Recognition elements in plant mitochondrion RNA editing. Mol Cell Biol 21:6731–6737PubMedCrossRefGoogle Scholar
  41. Fiebig A, Stegemann S, Bock R (2004) Rapid evolution of editing sites in a small non-essential plastid gene. Nucleic Acids Res 7:3615–3622CrossRefGoogle Scholar
  42. Fisk DG, Walker MB, Barkan A (1999) Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J 18:2621–2630PubMedCrossRefGoogle Scholar
  43. Freyer R, Kiefer-Meyer MC, Kössel H (1997) Occurrence of plastid RNA editing in all major ­lineages of land plants. Proc Natl Acad Sci USA 94:6285–6290PubMedCrossRefGoogle Scholar
  44. Giegé P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329PubMedCrossRefGoogle Scholar
  45. Gillman JD, Bentolila S, Hanson MR (2007) The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. Plant J 49:217–227PubMedCrossRefGoogle Scholar
  46. Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531PubMedCrossRefGoogle Scholar
  47. Gray MW (1996) RNA editing in plant organelles: a fertile field. Proc Natl Acad Sci USA 93:8157–8159PubMedCrossRefGoogle Scholar
  48. Grohmann L, Thieck O, Herz U, Schroder W, Brennicke A (1994) Translation of nad9 mRNAs in mitochondria from Solanum tuberosum is restricted to completely edited transcripts. Nucleic Acids Res 22:3304–3311PubMedCrossRefGoogle Scholar
  49. Grosskopf D, Mulligan RM (1996) Developmental- and tissue-specificity of RNA editing in mitochondria of suspension-cultured maize cells and seedlings. Curr Genet 29:556–563PubMedCrossRefGoogle Scholar
  50. Groth-Malonek M, Pruchner D, Grewe F, Knoop V (2005) Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Mol Biol Evol 22:117–125PubMedCrossRefGoogle Scholar
  51. Groth-Malonek M, Wahrmund U, Polsakiewicz M, Knoop V (2007) Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol Biol Evol 24:1068–1074PubMedCrossRefGoogle Scholar
  52. Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662PubMedCrossRefGoogle Scholar
  53. Halter CP, Peeters NM, Hanson MR (2004) RNA editing in ribosome-less plastids of iojap maize. Curr Genet 45:331–337PubMedCrossRefGoogle Scholar
  54. Hammani K, Okuda K, Tanz SK, Chateigner-Boutin AL, Shikanai T, Small I (2009) A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites. Plant Cell 21:3686–3699PubMedCrossRefGoogle Scholar
  55. Hanson M, Sutton C, Lu B (1996) Plant organelle gene expression: altered by RNA editing. Trends Plant Sci 1:57–64CrossRefGoogle Scholar
  56. Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549PubMedCrossRefGoogle Scholar
  57. Hayes ML, Hanson MR (2007) Identification of a sequence motif critical for editing of a tobacco chloroplast transcript. RNA 13:281–288PubMedCrossRefGoogle Scholar
  58. Hayes ML, Hanson MR (2008) High conservation of a 5′ element required for RNA editing of a C target in chloroplast psbE transcripts. J Mol Evol 67:233–245PubMedCrossRefGoogle Scholar
  59. Hayes ML, Reed ML, Hegeman CE, Hanson MR (2006) Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro. Nucleic Acids Res 34:3742–3754PubMedCrossRefGoogle Scholar
  60. He T, Du P, Li Y (2007) dbRES: a web-oriented database for annotated RNA editing sites. Nucleic Acids Res 35:D141–D144PubMedCrossRefGoogle Scholar
  61. Hecht J, Grewe F, Knoop V (2011b) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 3:344–358PubMedCrossRefGoogle Scholar
  62. Hegeman CE, Hayes ML, Hanson MR (2005) Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro. Plant J 42:124–132PubMedCrossRefGoogle Scholar
  63. Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374PubMedCrossRefGoogle Scholar
  64. Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246:1632–1634PubMedCrossRefGoogle Scholar
  65. Hirose T, Sugiura M (2001) Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 20:1144–1152PubMedCrossRefGoogle Scholar
  66. Hirose T, Kusumegi T, Tsudzuki T, Sugiura M (1999) RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet 262:462–467PubMedCrossRefGoogle Scholar
  67. Hoch B, Maier RM, Appel K, Igloi GL, Kössel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353:178–180PubMedCrossRefGoogle Scholar
  68. Ikeda TM, Gray MW (1999) Characterization of a DNA-binding protein implicated in transcription in wheat mitochondria. Mol Cell Biol 19:8113–8122PubMedGoogle Scholar
  69. Karcher D, Bock R (1998) Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translation in RNA editing. Nucleic Acids Res 26:1185–1190PubMedCrossRefGoogle Scholar
  70. Karcher D, Bock R (2002a) The amino acid sequence of a plastid protein is developmentally regulated by RNA editing. J Biol Chem 277:5570–5574PubMedCrossRefGoogle Scholar
  71. Karcher D, Bock R (2002b) Temperature sensitivity of RNA editing and intron splicing reactions in the plastid ndhB transcript. Curr Genet 41:48–52PubMedCrossRefGoogle Scholar
  72. Karcher D, Bock R (2009) Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. RNA 15:1251–1257PubMedCrossRefGoogle Scholar
  73. Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K (2008) Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J 55(4):619–628PubMedCrossRefGoogle Scholar
  74. Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749PubMedCrossRefGoogle Scholar
  75. Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139PubMedCrossRefGoogle Scholar
  76. Knoop V (2010) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68(4):567–586PubMedCrossRefGoogle Scholar
  77. Kobayashi K, Suzuki M, Tang J, Nagata N, Ohyama K, Seki H, Kiuchi R, Kaneko Y, Nakazawa M, Matsui M, Matsumoto S, Yoshida S, Muranaka T (2007) Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. Plant Cell Physiol 48:322–331PubMedCrossRefGoogle Scholar
  78. Kobayashi Y, Matsuo M, Sakamoto K, Wakasugi T, Yamada K, Obokata J (2008) Two RNA editing sites with cis-acting elements of moderate sequence identity are recognized by an identical site-recognition protein in tobacco chloroplasts. Nucleic Acids Res 36:311–318PubMedCrossRefGoogle Scholar
  79. Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330PubMedCrossRefGoogle Scholar
  80. Kubo N, Kadowaki K (1997) Involvement of 5′ flanking sequence for specifying RNA editing sites in plant mitochondria. FEBS Lett 413:40–44PubMedCrossRefGoogle Scholar
  81. Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423PubMedCrossRefGoogle Scholar
  82. Lahmy S, Barneche F, Derancourt J, Filipowicz W, Delseny M, Echeverria M (2000) A chloroplastic RNA-binding protein is a new member of the PPR family. FEBS Lett 480:255–260PubMedCrossRefGoogle Scholar
  83. Lenz H, Rudinger M, Volkmar U, Fischer S, Herres S, Grewe F, Knoop V (2010) Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature. Curr Genet 56:189–201PubMedCrossRefGoogle Scholar
  84. Lippok B, Brennicke A, Wissinger B (1994) Differential RNA editing in closely related introns in Oenothera mitochondria. Mol Gen Genet 243:39–46PubMedCrossRefGoogle Scholar
  85. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103PubMedCrossRefGoogle Scholar
  86. Maier RM, Hoch B, Zeltz P, Kössel H (1992a) Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids. Plant Cell 4:609–616PubMedGoogle Scholar
  87. Maier RM, Neckermann K, Hoch B, Akhmedov NB, Kössel H (1992b) Identification of editing positions in the ndhB transcript from maize chloroplasts reveals sequence similarities between editing sites of chloroplasts and plant mitochondria. Nucleic Acids Res 20:6189–6194PubMedCrossRefGoogle Scholar
  88. Maier RM, Zeltz P, Kössel H, Bonnard G, Gualberto JM, Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32:343–365PubMedCrossRefGoogle Scholar
  89. Maier U-G, Bozarth A, Funk H, Zauner S, Rensing S, Schmitz-Linneweber C, Börner T, Tillich M (2008) Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol 6:36PubMedCrossRefGoogle Scholar
  90. Malek O, Lättig K, Hiesel R, Brennicke A, Knoop V (1996) RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15:1403–1411PubMedGoogle Scholar
  91. Manthey GM, McEwen JE (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J 14:4031–4043PubMedGoogle Scholar
  92. Maruyama K, Sato N, Ohta N (1999) Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res 27:2029–2036PubMedCrossRefGoogle Scholar
  93. Miyamoto T, Obokata J, Sugiura M (2002) Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol Cell Biol 22:6726–6734PubMedCrossRefGoogle Scholar
  94. Miyamoto T, Obokata J, Sugiura M (2004) A site-specific factor interacts directly with its cognate RNA editing site in chloroplast transcripts. Proc Natl Acad Sci USA 101:48–52PubMedCrossRefGoogle Scholar
  95. Miyata Y, Sugita M (2004) Tissue- and stage-specific RNA editing of rps 14 transcripts in moss (Physcomitrella patens) chloroplasts. J Plant Physiol 161:113–115PubMedCrossRefGoogle Scholar
  96. Miyata Y, Sugiura C, Kobayashi Y, Hagiwara M, Sugita M (2002) Chloroplast ribosomal S14 protein transcript is edited to create a translation initiation codon in the moss Physcomitrella patens. Biochim Biophys Acta 1576:346–349PubMedCrossRefGoogle Scholar
  97. Mower JP (2005) PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics 6:96PubMedCrossRefGoogle Scholar
  98. Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37:W253–W259PubMedCrossRefGoogle Scholar
  99. Mulligan RM, Williams MA, Shanahan MT (1999) RNA editing site recognition in higher plant mitochondria. J Hered 90:338–344PubMedCrossRefGoogle Scholar
  100. Nakajima Y, Mulligan RM (2001) Heat stress results in incomplete C-to-U editing of maize chloroplast mRNAs and correlates with changes in chloroplast transcription rate. Curr Genet 40:209–213PubMedCrossRefGoogle Scholar
  101. Nakajima Y, Mulligan RM (2005) Nucleotide specificity of the RNA editing reaction in pea chloroplasts. J Plant Physiol 162:1347–1354PubMedCrossRefGoogle Scholar
  102. Nakamura T, Sugita M (2008) A conserved DYW domain of the pentatricopeptide repeat protein possesses a novel endoribonuclease activity. FEBS Lett 582:4163–4168PubMedCrossRefGoogle Scholar
  103. Nakamura T, Ohta M, Sugiura M, Sugita M (2001) Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 276:147–152PubMedCrossRefGoogle Scholar
  104. Nakamura T, Meierhoff K, Westhoff P, Schuster G (2003) RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA. Eur J Biochem 270:4070–4081PubMedCrossRefGoogle Scholar
  105. Navaratnam N, Sarwar R (2006) An overview of cytidine deaminases. Int J Hematol 83:195–200PubMedCrossRefGoogle Scholar
  106. Neuwirt J, Takenaka M, van der Merwe JA, Brennicke A (2005) An in vitro RNA editing system from cauliflower mitochondria: editing site recognition parameters can vary in different plant species. RNA 11:1563–1570PubMedCrossRefGoogle Scholar
  107. O’Brien EA, Zhang Y, Wang E, Marie V, Badejoko W, Lang BF, Burger G (2009) GOBASE: an organelle genome database. Nucleic Acids Res 37:D946–D950PubMedCrossRefGoogle Scholar
  108. Ohtani S, Ichinose M, Tasaki E, Aoki Y, Komura Y, Sugita M (2010) Targeted gene disruption identifies three PPR-DYW proteins involved in RNA editing for five editing sites of the moss mitochondrial transcripts. Plant Cell Physiol 51:1942–1949PubMedCrossRefGoogle Scholar
  109. Okuda K, Nakamura T, Sugita M, Shimizu T, Shikanai T (2006) A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing. J Biol Chem 281:37661–37667PubMedCrossRefGoogle Scholar
  110. Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183PubMedCrossRefGoogle Scholar
  111. Okuda K, Hammani K, Tanz SK, Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2009a) The pentatricopeptide repeat protein OTP82 is required for RNA editing of plastid ndhB and ndhG transcripts. Plant J 61:339–349PubMedCrossRefGoogle Scholar
  112. Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2009b) Pentatri­copeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21:146–156PubMedCrossRefGoogle Scholar
  113. Parkinson CL, Mower JP, Qiu YL, Shirk AJ, Song K, Young ND, DePamphilis CW, Palmer JD (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5:73PubMedCrossRefGoogle Scholar
  114. Pfalz J, Bayraktar OA, Prikryl J, Barkan A (2009) Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28:2042–2052PubMedCrossRefGoogle Scholar
  115. Phreaner CG, Williams MA, Mulligan RM (1996) Incomplete editing of rps12 transcripts results in the synthesis of polymorphic polypeptides in plant mitochondria. Plant Cell 8:107–117PubMedGoogle Scholar
  116. Picardi E, Regina TM, Brennicke A, Quagliariello C (2007) REDIdb: the RNA editing database. Nucleic Acids Res 35:D173–D177PubMedCrossRefGoogle Scholar
  117. Picardi E, Regina TM, Verbitskiy D, Brennicke A, Quagliariello C (2010) REDIdb: an upgraded bioinformatics resource for organellar RNA editing sites. Mitochondrion 11(2):360–365PubMedCrossRefGoogle Scholar
  118. Prikryl J, Rojas M, Schuster G, Barkan A (2010) Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci USA 108:415–420PubMedCrossRefGoogle Scholar
  119. Rajasekhar VK, Mulligan RM (1993) RNA editing in plant mitochondria: [alpha]-phosphate is retained during C-to-U conversion in mRNAs. Plant Cell 5:1843–1852PubMedGoogle Scholar
  120. Raynaud C, Loiselay C, Wostrikoff K, Kuras R, Girard-Bascou J, Wollman FA, Choquet Y (2007) Evidence for regulatory function of nucleus-encoded factors on mRNA stabilization and translation in the chloroplast. Proc Natl Acad Sci USA 104:9093–9098PubMedCrossRefGoogle Scholar
  121. Reed ML, Peeters NM, Hanson MR (2001a) A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo. Nucleic Acids Res 29:1507–1513PubMedCrossRefGoogle Scholar
  122. Reed ML, Lyi SM, Hanson MR (2001b) Edited transcripts compete with unedited mRNAs for trans-acting editing factors in higher plant chloroplasts. Gene 272:165–171PubMedCrossRefGoogle Scholar
  123. Robbins JC, Heller WP, Hanson MR (2009) A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript. RNA 15:1142–1153PubMedCrossRefGoogle Scholar
  124. Rudinger M, Polsakiewicz M, Knoop V (2008) Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat proteins in jungermanniid but not in marchantiid liverworts. Mol Biol Evol 25:1405–1414PubMedCrossRefGoogle Scholar
  125. Rudinger M, Funk HT, Rensing SA, Maier UG, Knoop V (2009) RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genomics 281:473–481PubMedCrossRefGoogle Scholar
  126. Salone V, Rudinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138PubMedCrossRefGoogle Scholar
  127. Sasaki T, Yukawa Y, Miyamoto T, Obokata J, Sugiura M (2003) Identification of RNA editing sites in chloroplast transcripts from the maternal and paternal progenitors of tobacco (Nicotiana tabacum): comparative analysis shows the involvement of distinct trans-factors for ndhB editing. Mol Biol Evol 20:1028–1035PubMedCrossRefGoogle Scholar
  128. Sasaki T, Yukawa Y, Wakasugi T, Yamada K, Sugiura M (2006) A simple in vitro RNA editing assay for chloroplast transcripts using fluorescent dideoxynucleotides: distinct types of sequence elements required for editing of ndh transcripts. Plant J 47:802–810PubMedCrossRefGoogle Scholar
  129. Schmitz-Linneweber C, Barkan A (2007) RNA splicing and RNA editing in chloroplasts. In: Barkan A (ed) Cell and molecular biology of plastids, vol 19. Springer, Berlin/Heidelberg, pp 213–248CrossRefGoogle Scholar
  130. Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670PubMedCrossRefGoogle Scholar
  131. Schmitz-Linneweber C, Tillich M, Herrmann RG, Maier RM (2001) Heterologous, splicing-dependent RNA editing in chloroplasts: allotetraploidy provides trans-factors. EMBO J 20:4874–4883PubMedCrossRefGoogle Scholar
  132. Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant ­speciation. Mol Biol Evol 19:1602–1612PubMedCrossRefGoogle Scholar
  133. Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005a) RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5¢ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804PubMedCrossRefGoogle Scholar
  134. Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann RG, Maier RM (2005b) Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit mRNA. Plant Cell 17:1815–1828PubMedCrossRefGoogle Scholar
  135. Schmitz-Linneweber C, Williams-Carrier R, Williams P, Kroeger T, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein binds to and facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663PubMedCrossRefGoogle Scholar
  136. Shields DC, Wolfe KH (1997) Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts. Mol Biol Evol 14:344–349PubMedCrossRefGoogle Scholar
  137. Small I, Peeters N (2000) The PPR motif – a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47PubMedCrossRefGoogle Scholar
  138. Smith H, Gott J, Hanson M (1997) A guide to RNA editing. RNA 3:1105–1123PubMedGoogle Scholar
  139. Staudinger M, Kempken F (2003) Electroporation of isolated higher-plant mitochondria: transcripts of an introduced cox2 gene, but not an atp6 gene, are edited in organello. Mol Genet Genomics 269:553–561PubMedCrossRefGoogle Scholar
  140. Staudinger M, Bolle N, Kempken F (2005) Mito­chondrial electroporation and in organello RNA editing of chimeric atp6 transcripts. Mol Genet Genomics 273:130–136PubMedCrossRefGoogle Scholar
  141. Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing. J Mol Evol 48:303–312PubMedCrossRefGoogle Scholar
  142. Sugita M, Miyata Y, Maruyama K, Sugiura C, Arikawa T, Higuchi M (2006) Extensive RNA editing in transcripts from the PsbB operon and RpoA gene of plastids from the enigmatic moss Takakia lepidozioides. Biosci Biotechnol Biochem 70:2268–2274PubMedCrossRefGoogle Scholar
  143. Sung TY, Tseng CC, Hsieh MH (2010) The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria. Plant J 63:499–511Google Scholar
  144. Takenaka M (2010) MEF9, an E-subclass pentatricopeptide repeat protein, is required for an RNA editing event in the nad7 transcript in mitochondria of Arabidopsis. Plant Physiol 152:939–947PubMedCrossRefGoogle Scholar
  145. Takenaka M, Brennicke A (2009) Multiplex single-base extension typing to identify nuclear genes required for RNA editing in plant organelles. Nucleic Acids Res 37:e13PubMedCrossRefGoogle Scholar
  146. Takenaka M, Neuwirt J, Brennicke A (2004) Complex cis-elements determine an RNA editing site in pea mitochondria. Nucleic Acids Res 32:4137–4144PubMedCrossRefGoogle Scholar
  147. Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Plessmann U, Urlaub H, Brennicke A (2007) In vitro RNA editing in plant mitochondria does not require added energy. FEBS Lett 581:2743–2747PubMedCrossRefGoogle Scholar
  148. Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2008) The process of RNA editing in plant mitochondria. Mitochondrion 8:35–46PubMedCrossRefGoogle Scholar
  149. Takenaka M, Verbitskiy D, Zehrmann A, Brennicke A (2010) Reverse genetic screening identifies five E-class PPR proteins involved in RNA editing in mitochondria of Arabidopsis thaliana. J Biol Chem 285:27122–27129PubMedCrossRefGoogle Scholar
  150. Tang J, Kobayashi K, Suzuki M, Matsumoto S, Muranaka T (2010) The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing. Plant J 61:456–466PubMedCrossRefGoogle Scholar
  151. Tasaki E, Hattori M, Sugita M (2010) The moss pentatricopeptide repeat protein with a DYW domain is responsible for RNA editing of mitochondrial ccmFc transcript. Plant J 62:560–570PubMedCrossRefGoogle Scholar
  152. Thompson J, Gopal S (2006) Genetic algorithm learning as a robust approach to RNA editing site prediction. BMC Bioinformatics 7:145PubMedCrossRefGoogle Scholar
  153. Thompson J, Higgins D, Gibson T (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  154. Tillich M, Funk HT, Schmitz-Linneweber C, Poltnigg P, Sabater B, Martin M, Maier RM (2005) Editing of plastid RNA in Arabidopsis thaliana ecotypes. Plant J 43:708–715PubMedCrossRefGoogle Scholar
  155. Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921PubMedCrossRefGoogle Scholar
  156. Tillich M, Le Sy V, Schulerowitz K, von Haeseler A, Maier UG, Schmitz-Linneweber C (2009a) Loss of matK RNA editing in seed plant chloroplasts. BMC Evol Biol 9:201PubMedCrossRefGoogle Scholar
  157. Tillich M, Hardel SL, Kupsch C, Armbruster U, Delannoy E, Gualberto JM, Lehwark P, Leister D, Small ID, Schmitz-Linneweber C (2009b) Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc Natl Acad Sci USA 106:6002–6007PubMedCrossRefGoogle Scholar
  158. Tillich M, Beick S, Schmitz-Linneweber C (2010) Chloroplast RNA-binding proteins: repair and regulation of chloroplast transcripts. RNA Biol 7:172–178PubMedCrossRefGoogle Scholar
  159. Tseng CC, Sung TY, Li YC, Hsu SJ, Lin CL, Hsieh MH (2010) Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Mol Biol 73:309–323PubMedCrossRefGoogle Scholar
  160. Tsuchiya N, Fukuda H, Sugimura T, Nagao M, Nakagama H (2002) LRP130, a protein containing nine pentatricopeptide repeat motifs, interacts with a single-stranded cytosine-rich sequence of mouse hypervariable minisatellite Pc-1. Eur J Biochem 269:2927–2933PubMedCrossRefGoogle Scholar
  161. Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332PubMedCrossRefGoogle Scholar
  162. Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H (2008) Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 20:3331–3345PubMedCrossRefGoogle Scholar
  163. Valcarcel J, Green MR (1996) The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem Sci 21:296–301PubMedGoogle Scholar
  164. Valente L, Nishikura K (2005) ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol 79:299–338PubMedCrossRefGoogle Scholar
  165. van der Merwe JA, Takenaka M, Neuwirt J, Verbitskiy D, Brennicke A (2006) RNA editing sites in plant mitochondria can share cis-elements. FEBS Lett 580:268–272PubMedCrossRefGoogle Scholar
  166. Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A, Takenaka M (2008) Multiple specificity recognition motifs enhance plant mitochondrial RNA editing in vitro. J Biol Chem 283:24374–24381PubMedCrossRefGoogle Scholar
  167. Verbitskiy D, Zehrmann A, van der Merwe JA, Brennicke A, Takenaka M (2009) The PPR protein encoded by the LOVASTATIN INSENSITIVE 1 gene is involved in RNA editing at three sites in mitochondria of Arabidopsis thaliana. Plant J 61(3):446–455PubMedCrossRefGoogle Scholar
  168. Verbitskiy D, Zehrmann A, Brennicke A, Takenaka M (2010) A truncated MEF11 protein shows site-specific effects on mitochondrial RNA editing. Plant Signal Behav 5(5):558–560Google Scholar
  169. Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118PubMedCrossRefGoogle Scholar
  170. Walbot V (1991) RNA editing fixes problems in plant mitochondrial transcripts. Trends Genet 7:37–39PubMedGoogle Scholar
  171. Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu YG (2006) cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687PubMedCrossRefGoogle Scholar
  172. Williams MA, Tallakson WA, Phreaner CG, Mulligan RM (1998) Editing and translation of ribosomal protein S13 transcripts: unedited translation products are not detectable in maize mitochondria. Curr Genet 34:221–226PubMedCrossRefGoogle Scholar
  173. Williams-Carrier R, Kroeger T, Barkan A (2008) Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand. RNA 14:1930–1941PubMedCrossRefGoogle Scholar
  174. Wintz H, Hanson MR (1991) A termination codon is created by RNA editing in the petunia atp9 transcript. Curr Genet 19:61–64PubMedCrossRefGoogle Scholar
  175. Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum ­capillus-veneris. Gene 339:89–97PubMedCrossRefGoogle Scholar
  176. Yoshinaga K, Iinuma H, Masuzawa T, Uedal K (1996) Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24:1008–1014PubMedCrossRefGoogle Scholar
  177. Yoshinaga K, Kakehi T, Shima Y, Iinuma H, Masuzawa T, Ueno M (1997) Extensive RNA editing and possible double-stranded structures determining editing sites in the atpB transcripts of hornwort chloroplasts. Nucleic Acids Res 25:4830–4834PubMedCrossRefGoogle Scholar
  178. Yu W, Schuster W (1995) Evidence for a site-specific cytidine deamination reaction involved in C to U RNA editing of plant mitochondria. J Biol Chem 270:18227–18233PubMedCrossRefGoogle Scholar
  179. Yu QB, Jiang Y, Chong K, Yang ZN (2009) AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J 59:1011–1023PubMedCrossRefGoogle Scholar
  180. Yura K, Sulaiman S, Hatta Y, Shionyu M, Go M (2009) RESOPS: a database for analyzing the correspondence of RNA editing sites to protein three-dimensional structures. Plant Cell Physiol 50:1865–1873PubMedCrossRefGoogle Scholar
  181. Zabaleta E, Mouras A, Hernould M, Suharsono AA (1996) Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA. Proc Natl Acad Sci USA 93:11259–11263PubMedCrossRefGoogle Scholar
  182. Zandueta-Criado A, Bock R (2004) Surprising features of plastid ndhD transcripts: addition of non-encoded nucleotides and polysome association of mRNAs with an unedited start codon. Nucleic Acids Res 32:542–550PubMedCrossRefGoogle Scholar
  183. Zehrmann A, van der Merwe JA, Verbitskiy D, Brennicke A, Takenaka M (2008) Seven large variations in the extent of RNA editing in plant mitochondria between three ecotypes of Arabidopsis thaliana. Mitochondrion 8:319–327PubMedCrossRefGoogle Scholar
  184. Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567PubMedCrossRefGoogle Scholar
  185. Zehrmann A, Verbitskiy D, Hartel B, Brennicke A, Takenaka M (2010) RNA editing competence of trans-factor MEF1 is modulated by ecotype-specific differences but requires the DYW domain. FEBS Lett 584:4181–4186PubMedCrossRefGoogle Scholar
  186. Zhou W, Cheng Y, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang J (2009) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J 58:82–96PubMedCrossRefGoogle Scholar
  187. Zito F, Kuras R, Choquet Y, Kössel H, Wollman FA (1997) Mutations of cytochrome b6 in Chlamydomonas reinhardtii disclose the functional significance for a proline to leucine conversion by petB editing in maize and tobacco. Plant Mol Biol 33:79–86PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sabrina Finster
    • 1
  • Julia Legen
    • 1
  • Yujiao Qu
    • 1
  • Christian Schmitz-Linneweber
    • 1
  1. 1.Institute of BiologyHumboldt University of BerlinBerlinGermany

Personalised recommendations