Horizontal Gene Transfer in Eukaryotes: Fungi-to-Plant and Plant-to-Plant Transfers of Organellar DNA

  • Susanne S. Renner
  • Sidonie Bellot
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 35)


This review focuses on horizontal gene transfer (HGT) involving bacteria, fungi, and plants (Viridiplantae). It highlights in particular the persistent challenge of recognizing HGT, which requires a combination of methods from bioinformatics, phylogenetics, and molecular biology. Non-phylogenetic methods rely on compositional structure, such as G/C content, dinucleotide frequencies, codon usage biases, or co-conversion tracts, while phylogenetic methods rely on incongruence among gene trees, one of which is taken to represent the true organismal phylogeny. All methods are handicapped by short sequence lengths with limited or highly uneven substitution signal; the statistical problems of working with taxon-rich alignments of such sequences include low support for inferred relationships, and difficult orthology assessment. Plant-to-plant HGT is known from two dozen mitochondrial genes and species of phylogenetically and geographically widely separated ferns, gymnosperms, and angiosperms, with seven cases involving parasitic plants. Only one nuclear HGT has come to light, and extremely few fungi-to-plant transfers. Plant mitochondrial genomes, especially in tracheophytes, are prone to take up foreign DNA, but evolutionary consequences of this are still unclear.


Horizontal Gene Transfer Horizontal Transfer Codon Usage Bias Horizontal Gene Transfer Event Plant Mitochondrial Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Basic local alignment search tool;


Plastid DNA;


Deoxyribonucleic acid;


Expressed sequence tag;


Horizontal gene transfer;


Horizontal transposon transfer;


Mitochondrial (DNA);


Mu-like elements (Mu is mutator in corn);


Million years;


Open reading frame;


Polymerase chain reaction;


Ribonucleic acid;


Transferred DNA;


Transposable element;


Tumor-inducing plasmid


  1. Adams KL, Clements MJ, Vaughn JC (1998) The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J Mol Evol 46:689–696PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197PubMedCrossRefGoogle Scholar
  4. Archibald JM, Richards TA (2010) Gene transfer: anything goes in plant mitochondria. BMC Biol 8:147PubMedCrossRefGoogle Scholar
  5. Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101:7805–7808PubMedCrossRefGoogle Scholar
  6. Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248PubMedCrossRefGoogle Scholar
  7. Belshaw R, Bensasson D (2006) The rise and falls of introns. Heredity 96:208–213PubMedCrossRefGoogle Scholar
  8. Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201PubMedCrossRefGoogle Scholar
  9. Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752PubMedCrossRefGoogle Scholar
  10. Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22PubMedCrossRefGoogle Scholar
  11. Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc B 277(1683):819–827PubMedCrossRefGoogle Scholar
  12. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodrıguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633PubMedCrossRefGoogle Scholar
  13. Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716PubMedCrossRefGoogle Scholar
  14. Cho Y, Palmer JD (1999) Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial coxl gene during evolution of the Araceae family. Mol Biol Evol 16:1155–1165PubMedCrossRefGoogle Scholar
  15. Cho Y, Adams KL, Qiu Y-L, Kuhlman P, Vaughn JC, Palmer JD (1998a) A highly invasive group I intron in the mitochondrial cox1 gene. In: Moller I-M, Gardestrom P, Glimelius K, Glaser E (eds) Plant mitochondria: from gene to function. Backhuys, Leiden, pp 19–23Google Scholar
  16. Cho Y, Qiu Y-L, Kuhlman P, Palmer JD (1998b) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14244–14249PubMedCrossRefGoogle Scholar
  17. Cohen O, Pupko T (2010) Inference and charac­terization of horizontally transferred gene families using stochastic mapping. Mol Biol Evol 27:703–713PubMedCrossRefGoogle Scholar
  18. Cusimano N, Zhang L-B, Renner SS (2008) Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Mol Biol Evol 25:1–12CrossRefGoogle Scholar
  19. Danchina EGJ, Rossoa M-N, Vieiraa P, de Almeida-Englera J, Coutinhob PM, Henrissat B, Abad P (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 107:17651–17656CrossRefGoogle Scholar
  20. Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678PubMedCrossRefGoogle Scholar
  21. Davis CC, Anderson WR, Wurdack KJ (2005) Gene transfer from a parasitic flowering plant to a fern. Proc R Soc B 272:2237–2242PubMedCrossRefGoogle Scholar
  22. Diao X, Freeling M, Lisch D (2006) Horizontal transfer of a plant transposon. PLoS Biol 4:e5PubMedCrossRefGoogle Scholar
  23. Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98:485–490PubMedCrossRefGoogle Scholar
  24. Embley TM, Thomas RH, Williams RAD (1993) Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus. Syst Appl Microbiol 16:25–29CrossRefGoogle Scholar
  25. Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  26. Felsenstein J (1978) Cases in which parsimony or compatability methods will be positively misleading. Syst Zool 27:401–410CrossRefGoogle Scholar
  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  28. Ferandon C, Moukha S, Callac P, BenedettoJ-P CM, Barroso G (2010) The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group I introns. PLoS ONE 5:e14048PubMedCrossRefGoogle Scholar
  29. Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219PubMedCrossRefGoogle Scholar
  30. Foster PG, Cox CJ, Embley TM (2009) The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond B 364:2197–2207CrossRefGoogle Scholar
  31. Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676PubMedCrossRefGoogle Scholar
  32. Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C (2010) A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464:1347–1352PubMedCrossRefGoogle Scholar
  33. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev 3:679–687CrossRefGoogle Scholar
  34. Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110PubMedCrossRefGoogle Scholar
  35. Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS One 3:e2616PubMedCrossRefGoogle Scholar
  36. Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104PubMedCrossRefGoogle Scholar
  37. Hao W (2010) OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs. BMC Bioinformatics 11:114PubMedCrossRefGoogle Scholar
  38. Hao W, Palmer JD (2009) Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proc Natl Acad Sci USA 106:16728–16733PubMedCrossRefGoogle Scholar
  39. Hao W, Richardson AO, Zheng Y, Palmer JD (2010) Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci USA 107:21576–21581PubMedCrossRefGoogle Scholar
  40. Hecht J, Grewe F, Knoop V (2011) Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 3:344–358Google Scholar
  41. Henze K, Martin W (2001) How do mitochondrial genes get into the nucleus? Trends Genet 17:383–387PubMedCrossRefGoogle Scholar
  42. Hill T, Nordström KJV, Thollesson M, Säfström TM, Vernersson AKE, Fredriksson R, Schiöth HB (2010) SPRIT: identifying horizontal gene transfer in rooted phylogenetic trees. BMC Evol Biol 10:42PubMedCrossRefGoogle Scholar
  43. Inda LA, Pimentel M, Chase MW (2010) Contribution of mitochondrial cox1 intron sequences to the phylogenetics of tribe Orchideae (Orchidaceae): do the distribution and sequence of this intron in orchids also tell us something about its evolution? Taxon 59:1053–1064Google Scholar
  44. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573PubMedCrossRefGoogle Scholar
  45. Keeling PJ (2009a) Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 19:613–619PubMedCrossRefGoogle Scholar
  46. Keeling PJ (2009b) Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. In: Gogarten MB et al (eds) Horizontal gene transfer: genomes in flux, vol 532, Methods in molecular biology., pp 501–515CrossRefGoogle Scholar
  47. Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618PubMedCrossRefGoogle Scholar
  48. Knoop V, Volkmar U, Hecht J, Grewe F (2010) Mitochondrial genome evolution in the plant lineage. In: Kempken F (ed) Plant mitochondria, vol 1, Advances in plant biology., pp 3–29Google Scholar
  49. Koski LB, Golding B (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52:540–542PubMedGoogle Scholar
  50. Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245–1254PubMedCrossRefGoogle Scholar
  51. Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100:9658–9662PubMedCrossRefGoogle Scholar
  52. Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622PubMedCrossRefGoogle Scholar
  53. Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35PubMedCrossRefGoogle Scholar
  54. Lander ES, The International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  55. Lucas WJ, Ham B-K, Kim J-Y (2009) Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503PubMedCrossRefGoogle Scholar
  56. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, WoloshukC XX, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Van Hua A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373PubMedCrossRefGoogle Scholar
  57. Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, Murphy MEP, Maldonado MT, Armbrust EB (2009) Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457(22):467–470PubMedCrossRefGoogle Scholar
  58. Martin W (2005) Lateral gene transfer and other possibilities. Heredity 94:565–566PubMedCrossRefGoogle Scholar
  59. Mirkin BG, Fenner TI, Galperin MY, Koonin EV (2003) Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3:2PubMedCrossRefGoogle Scholar
  60. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002PubMedCrossRefGoogle Scholar
  61. Mower JP, Stefanovic S, Young GJ, Palmer JD (2004) Gene transfer from parasitic to host plants. Nature 432:165–166PubMedCrossRefGoogle Scholar
  62. Mower JP, Stefanovic S, Hao W, Gummow JS, Jain K, Ahmed D, Palmer JD (2010) Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 8:150PubMedCrossRefGoogle Scholar
  63. Nickrent DL, Blarer A, Qiu YL, Vidal-Russell R, Anderson FE (2004) Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 4:40PubMedCrossRefGoogle Scholar
  64. Nishida H, Sugiyama J (1995) A common group I intron between a plant parasitic fungus and its host. Mol Biol Evol 12:883–886PubMedGoogle Scholar
  65. Noble GP, Rogers MB, Keeling PJ (2007) Complex distribution of EFL and EF-1alpha proteins in the green algal lineage. BMC Evol Biol 7:82PubMedCrossRefGoogle Scholar
  66. Odom OW, Shenkenberg DL, Garcia JA, Herrin DL (2004) A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. RNA 10:1097–1107PubMedCrossRefGoogle Scholar
  67. Omer S, Kovacs A, Mazor Y, Gophna U (2010) Integration of a foreign gene into a native complex does not impair fitness in an experimental model of lateral gene transfer. Mol Biol Evol 27:2441–2445PubMedCrossRefGoogle Scholar
  68. Ragan MA, Beiko RG (2009) Lateral genetic transfer: open issues. Philos Trans R Soc Lond B 364:2241–2251CrossRefGoogle Scholar
  69. Ragan MA, Harlow TJ, Beiko RG (2006) Do different surrogate methods detect lateral genetic transfer events of different relative ages? Trends Microbiol 14:4–8PubMedCrossRefGoogle Scholar
  70. Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911PubMedCrossRefGoogle Scholar
  71. Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9PubMedCrossRefGoogle Scholar
  72. Rogers MB, Watkins RF, Harper JT, Durnford DG, Gray MW, Keeling PJ (2007) A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 7:89PubMedCrossRefGoogle Scholar
  73. Roney JK, Khatibi PA, Westwood JH (2007) Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol 143:1037–1043PubMedCrossRefGoogle Scholar
  74. Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906PubMedCrossRefGoogle Scholar
  75. Sanchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203PubMedCrossRefGoogle Scholar
  76. Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777PubMedCrossRefGoogle Scholar
  77. Sanchez-Puerta MV, Abbona CC, Zhuo S, Tepe EJ, Bohs L, Olmstead RG, Palmer JD (2011) Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended coconversion of flanking exons. BMC Evol Biol 11:277PubMedCrossRefGoogle Scholar
  78. Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546PubMedCrossRefGoogle Scholar
  79. Schönenberger J, Anderberg AA, Sytsma KJ (2005) Molecular phylogenetics and patterns of floral evolution in the ericales. Int J Plant Sci 166:265–288CrossRefGoogle Scholar
  80. Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755PubMedCrossRefGoogle Scholar
  81. Snir S, Trifonov E (2010) A novel technique for detecting putative horizontal gene transfer in the sequence space. J Comput Biol 17:1535–1548PubMedCrossRefGoogle Scholar
  82. Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EP (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452PubMedCrossRefGoogle Scholar
  83. Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944PubMedCrossRefGoogle Scholar
  84. Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651PubMedCrossRefGoogle Scholar
  85. Stiller JW (2011) Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer. BMC Evol Biol 11:259PubMedCrossRefGoogle Scholar
  86. Ülker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008) T-DNA–mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017PubMedCrossRefGoogle Scholar
  87. Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia. J Mol Evol 41:563–572PubMedCrossRefGoogle Scholar
  88. Wolf YI, Kondrashov FA, Koonin EV (2001) Footprints of primordial introns on the eukaryotic genome: still no clear traces. Trends Genet 17:499–501PubMedCrossRefGoogle Scholar
  89. Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829PubMedCrossRefGoogle Scholar
  90. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314PubMedCrossRefGoogle Scholar
  91. Yoshida S, Maruyama S, Nozaki H, Shirasu K (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328:1128PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Systematic Botany and MycologyUniversity of MunichMunichGermany

Personalised recommendations