Cardiac Stem Cells Derived from Epithelial-Mesenchymal Transition of the Epicardial Cells: Role in Heart Regeneration (Method)

  • Daria Nurzynska
  • Franca Di Meglio
  • Stefania Montagnani
  • Clotilde Castaldo
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 5)


Epithelial-mesenchymal transition (EMT) involves genotypic and phenotypic changes leading to the conversion of polarized epithelial cells into motile mesenchymal cells. This process occurs typically in mesothelial cells of developing cardiac tissue, but recent discoveries indicate the preservation or reactivation of embryonic potential of epicardial cells in the adult heart. Moreover, cells with cardiac stem cell phenotype and properties have been identified among epicardially derived cell (EPDC) population, indicating EMT and EPDCs as yet another source of cells for adult cardiac tissue regeneration in cardiovascular diseases. Understanding how and when EPDCs arise from epicardial cells by EMT in the adult human heart could have a strong impact in clarifying the mechanisms of cardiac tissue self-renewal and regeneration. The chapter includes a protocol for adult human epicardial cell culture and EMT induction leading to a formation of cardiac progenitor cells in vitro.


Hepatocyte Growth Factor Mesothelial Cell Cardiac Stem Cell Cardiac Progenitor Cell Epicardial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19:294–308PubMedCrossRefGoogle Scholar
  2. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073PubMedCrossRefGoogle Scholar
  3. Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Müller P, Böhm M, Cotrufo M, Montagnani S (2008) CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells 26:1723–1731PubMedCrossRefGoogle Scholar
  4. Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181PubMedCrossRefGoogle Scholar
  5. Di Meglio F, Castaldo C, Nurzynska D, Romano V, Miraglia R, Bancone C, Langella G, Vosa C, Montagnani S (2010a) Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. J Mol Cell Cardiol 49:719–727PubMedCrossRefGoogle Scholar
  6. Di Meglio F, Castaldo C, Nurzynska D, Romano V, Miraglia R, Montagnani S (2010b) Epicardial cells are missing from the surface of hearts with ischemic cardiomyopathy: a useful clue about the self-renewal potential of the adult human heart? Int J Cardiol 145:e44–e46PubMedCrossRefGoogle Scholar
  7. Eid H, Larson DM, Springhorn JP, Attawia MA, Nayak RC, Smith TW, Kelly RA (1992) Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res 71:40–50PubMedGoogle Scholar
  8. Eralp I, Lie-Venema H, Bax NA, Wijffels MC, Van Der Laarse A, Deruiter MC, Bogers AJ, Van Den Akker NM, Gourdie RG, Schalij MJ, Poelmann RE, Gittenberger-De Groot AC (2006) Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat Rec A Discov Mol Cell Evol Biol 288:1272–1280PubMedGoogle Scholar
  9. Freshney RI (2000) Culture of animal cells: a manual of basic techniques, 4th edn. Wiley-Liss, New York, pp 159–175Google Scholar
  10. Gambini E, Pompilio G, Biondi A, Alamanni F, Capogrossi MC, Agrifoglio M, Pesce M (2010) C-kit+  cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovasc Res 89:362–373PubMedCrossRefGoogle Scholar
  11. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052PubMedGoogle Scholar
  12. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signalling mechanisms that create it. Dev Dyn 233:706–720PubMedCrossRefGoogle Scholar
  13. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335PubMedCrossRefGoogle Scholar
  14. Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini D, Iannelli P, De Mori R, Marchetti C, Bozzoli O, Gentili C, Zacheo A, Germani A, Capogrossi MC (2010) Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol 48:609–618PubMedCrossRefGoogle Scholar
  15. Martínez-Estrada OM, Lettice LA, Essai A, Guadix JA, Slight J, Velacela V, Hall E, Reichmann J, Devenney PS, Hohenstein P, Hosen N, Hill RE, Muñoz-Chapuli R, Hastie ND (2010) Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet 42:89–93PubMedCrossRefGoogle Scholar
  16. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50:280–289PubMedCrossRefGoogle Scholar
  17. Rangappa S, Makkar R, Forrester J (2010) Current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther 15:338–343PubMedCrossRefGoogle Scholar
  18. Shah AP, Youngquist ST, McClung CD, Tzvetkova E, Hanif MA, Rosborough JP, Niemann JT (2011) Markers of progenitor cell recruitment and differentiation rise early during ischemia and continue during resuscitation in a porcine acute ischemia model. J Interferon Cytokine Res 31:509–513PubMedCrossRefGoogle Scholar
  19. Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–1782PubMedCrossRefGoogle Scholar
  20. Smart N, Risebro CA, Clark JE, Ehler E, Miquerol L, Rossdeutsch A, Marber MS, Riley PR (2010) Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci 1194:97–104PubMedCrossRefGoogle Scholar
  21. Smart N, Bollini S, Dubé KN, Vieira JM, Zhou B, Davidson S, Yellow D, Riegler J, Price AN, Lythgoe MF, Pu WT, Riley PR (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature. doi: 10.1038/nature10188
  22. Stevens MV, Broka DM, Parker P, Rogowitz E, Vaillancourt RR, Camenisch TD (2008) MEKK3 initiates transforming growth factor beta 2-dependent epithelial-to-mesenchymal transition during endocardial cushion morphogenesis. Circ Res 103:1430–1440PubMedCrossRefGoogle Scholar
  23. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedCrossRefGoogle Scholar
  24. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRefGoogle Scholar
  25. van Wijk B, van den Berg G, Abu-Issa R, Barnett P, van der Velden S, Schmidt M, Ruijter JM, Kirby ML, Moorman AF, van den Hoff MJ (2009) Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circ Res 105:431–441PubMedCrossRefGoogle Scholar
  26. VanWinkle WB, Snuggs MB, Buja LM (1996) Cardiogel: a biosynthetic extracellular matrix for cardiomyocyte culture. In Vitro Cell Dev Biol Anim 32:478–485PubMedCrossRefGoogle Scholar
  27. Weeke-Klimp A, Bax NA, Bellu AR, Winter EM, Vrolijk J, Plantinga J, Maas S, Brinker M, Mahtab EA, Gittenberger-de Groot AC, van Luyn MJ, Harmsen MC, Lie-Venema H (2010) Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. J Mol Cell Cardiol 49:606–616PubMedCrossRefGoogle Scholar
  28. Wessels A, Pérez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57PubMedCrossRefGoogle Scholar
  29. Winter EM, Grauss RW, Hogers B, van Tuyn J, van der Geest R, Lie-Venema H, Steijn RV, Maas S, DeRuiter MC, de Vries AA, Steendijk P, Doevendans PA, van der Laarse A, Poelmann RE, Schalij MJ, Atsma DE, Gittenberger-de Groot AC (2007) Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 116:917–927PubMedCrossRefGoogle Scholar
  30. Zeisberg M, Neilson EG (2009) Biomarkers for ­epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437PubMedCrossRefGoogle Scholar
  31. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Daria Nurzynska
    • 1
  • Franca Di Meglio
    • 1
  • Stefania Montagnani
    • 1
  • Clotilde Castaldo
    • 1
  1. 1.Department of Biomorphological and Functional SciencesUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations