Cellular Cardiomyoplasty: Arterial Cells-Stem Cells Transplantation

Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 5)

Abstract

Cardiovascular disease is the leading cause of mortality and morbidity all over the world. Current treatments in cardiovascular disease do not prevent the cell loss and have no contribution to regeneration, although these therapies provided an improvement in the survival. Cardiac repair by stem cells promises regenerating damaged myocardium by reconstructing the injured heart from its component parts. Up to date, variety of stem cells including BM mononuclear, adipocyte progenitor cells, fibroblasts, smooth and strait muscle cells, circulating progenitor cells, embryonic stem cells, cord blood cells etc., have been used for cardiac repair experimentally and some at clinically. There is no consensus which cell should be use for cardiac repair. We strongly suggest that vascular wall cells seem to be a good candidate for cardiomyoplasty.

Keywords

Stem Cell Vascular Smooth Muscle Cell Cardiac Repair Cord Blood Cell Bone Marrow Derive Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Annarosa L, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416CrossRefGoogle Scholar
  2. Anversa P, Kajstura J (1998) Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 83:1–14PubMedGoogle Scholar
  3. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523PubMedCrossRefGoogle Scholar
  4. Becker RO, Chapin S, Sherry R (1974) Regeneration of the ventricular myocardium in amphibians. Nature 248:145–147PubMedCrossRefGoogle Scholar
  5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102PubMedCrossRefGoogle Scholar
  6. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59(1):1–61PubMedGoogle Scholar
  7. Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17:984–992PubMedCrossRefGoogle Scholar
  8. Gersh BJ, Simari RD, Behfar A, Terzic CM, Terzic A (2009) Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc 84:876–892PubMedCrossRefGoogle Scholar
  9. Hao H, Gabbiani G, Bochaton-Piallat ML (2003) Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23(9):1510–1520PubMedCrossRefGoogle Scholar
  10. Heldman AW, Zambrano JP, Hare JM (2011) Cell therapy for heart disease where are we in 2011? J Am Coll Cardiol 57:4CrossRefGoogle Scholar
  11. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113:1258–1265PubMedGoogle Scholar
  12. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall–derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105(7):2783–2786PubMedCrossRefGoogle Scholar
  13. Juchem G, Weiss DR, Gansera B, Kemkes BM, Mueller-Hoecker J, Nees S (2010) Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. Am J Physiol Heart Circ Physiol 298(3):H754–H770PubMedCrossRefGoogle Scholar
  14. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95:8801–8805PubMedCrossRefGoogle Scholar
  15. Kovacic JC, Boehm M (2009) Resident vascular progenitor cells: an emerging role for non-terminally differentiated vessel-resident cells in vascular biology. Stem Cell Res 2(1):2–15PubMedCrossRefGoogle Scholar
  16. Laflamme MA, Myerson D, Saffitz JE, Murry CE (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90:634–640PubMedCrossRefGoogle Scholar
  17. Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA (1999) Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol 31:513–522PubMedCrossRefGoogle Scholar
  18. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757PubMedCrossRefGoogle Scholar
  19. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114PubMedCrossRefGoogle Scholar
  20. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM (2008) Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29:1807–1818PubMedCrossRefGoogle Scholar
  21. Menasche P (2011) Cardiac cell therapy: lessons from clinical trials. J Mol Cell Cardiol 50:258–265PubMedCrossRefGoogle Scholar
  22. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921PubMedCrossRefGoogle Scholar
  23. Nikolova G, Strilic B, Lammert E (2006) The vascular niche and its basement membrane. Trends Cell Biol 17(1):19–25PubMedCrossRefGoogle Scholar
  24. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253PubMedCrossRefGoogle Scholar
  25. Ohlstein B, Kai T, Decotto E, Spradling A (2004) The stem cell niche: theme and variations. Curr Opin Cell Biol 16:693–699PubMedCrossRefGoogle Scholar
  26. Owens GK (2007) Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp 283:174–191PubMedCrossRefGoogle Scholar
  27. Pacilli A, Pasquinelli G (2009) Vascular wall resident ­progenitor cells. A review. Exp Cell Res 315:901–914PubMedCrossRefGoogle Scholar
  28. Pendyala L, Goodchild T, Gadesam RR, Chen J, Robinson K, Chronos N, Hou D (2008) Cellular cardiomyoplasty and cardiac regeneration. Curr Cardiol Rev 4(2):72–80PubMedCrossRefGoogle Scholar
  29. Reffelmann T, Könemann S, Kloner RA (2009) Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair. Putting it in perspective with existing therapy. J Am Coll Cardiol 53:305–308PubMedCrossRefGoogle Scholar
  30. Rensen SSM, Doevendans PAFM, van Eys GJJM (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15(3):100–108PubMedCrossRefGoogle Scholar
  31. Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A (2006) Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol 26(2):281–286PubMedCrossRefGoogle Scholar
  32. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908PubMedCrossRefGoogle Scholar
  33. Tokac M, Aktan M, Ak A, Duman S, Tokgozoglu L, Aygul N, Paksoy Y, Porat Y (2010) Autologous transplantation of arterial cells improves cardiac function in a rabbit model of infarcted myocardium. Stem Cells Dev 19(6):927–934PubMedCrossRefGoogle Scholar
  34. Torsney E, Xu Q (2011) Resident vascular progenitor cells. J Mol Cell Cardiol 50(2):304–311PubMedCrossRefGoogle Scholar
  35. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85PubMedCrossRefGoogle Scholar
  36. Velican D, Velican C (1989) Coronary anatomy and microarchitecture as related to coronary atherosclerotic involvement. Med Interne 27(4):257–262PubMedGoogle Scholar
  37. Wurmser AE, Palmer TD, Gage FH (2004) Neuroscience. Cellular interactions in the stem cell niche. Science 304:1253–1255PubMedCrossRefGoogle Scholar
  38. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551PubMedCrossRefGoogle Scholar
  39. Zhang H, Fazel S, Tian H, Mickle DAG, Weisel RD, Fujii T, Li R (2005) Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol 289:H2089–H2096PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Cardiology Department, Meram Faculty of MedicineSelcuk UniversityKonyaTurkey
  2. 2.Histology Embryology Department, Meram Faculty of MedicineSelcuk UniversityKonyaTurkey

Personalised recommendations