miR-200a Regulation of the Wnt Signaling in Meningioma Tumorigenesis

  • Arda Mizrak
  • Ozlem Senol
  • Baris Gokhan Ozdener
  • Okay Saydam
Part of the Tumors of the Central Nervous System book series (TCNS, volume 7)


A number of microRNAs (miRNAs) are dysregulated in cancer and they can exert critical roles in initiation and progression of various tumors. Meningiomas are derived from arachnoidal cells associated with brain meninges and frequently associated with loss of the neurofibromatosis 2 (NF2) gene. Here, we define a human meningioma-typical miRNA profile and characterize effects of one miRNA, miR-200a which is markedly downregulated in these tumors. Elevation of levels of miR-200a inhibited meningioma cell growth in culture and in a tumor model in vivo. This upregulation of miR-200a was associated with decreased expression of transcription factors, ZEB1 and SIP1, with consequently increased E-cadherin expression. An inverse correlation was also found between downregulation of miR-200a in meningiomas and increased expression of β-catenin and cyclin D1, with miR-200a targeting of the β-catenin mRNA and inhibiting Wnt signaling. miR-200a appears to act as a multi-functional tumor suppressor miRNA in meningiomas through effects on the E-cadherin and β-catenin signaling pathways. This reveals a previously unrecognized signaling cascade involved in meningioma tumor development and highlights a novel molecular interaction between miR-200a and Wnt signaling, thereby providing insights into novel therapies for meningiomas.


Adenomatous Polyposis Coli Adenomatous Polyposis Coli Gene Meningioma Cell Arachnoidal Cell Meningioma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Children’s Tumor Foundation 2007-01-043 (O.S.) and NIH/NINDS NS24279 (XOB and OS). We thank Dr. Breakefield for editing of this manuscript.


  1. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804PubMedCrossRefGoogle Scholar
  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  3. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770PubMedCrossRefGoogle Scholar
  4. Brunner EC, Romeike BF, Jung M, Comtesse N, Meese E (2006) Altered expression of beta-catenin/E-cadherin in meningiomas. Histopathology 49:178–187PubMedCrossRefGoogle Scholar
  5. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589PubMedCrossRefGoogle Scholar
  6. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480PubMedCrossRefGoogle Scholar
  7. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  8. Fontaine B, Rouleau GA, Seizinger BR, Menon AG, Jewell AF, Martuza RL, Gusella JF (1991) Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci 61:338–343CrossRefGoogle Scholar
  9. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMedCrossRefGoogle Scholar
  10. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601PubMedCrossRefGoogle Scholar
  11. Horiguchi A, Zheng R, Shen R, Nanus DM (2008) Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate 68:975–984PubMedCrossRefGoogle Scholar
  12. Huang D, Du X (2008) Crosstalk between tumor cells and microenvironment via Wnt pathway in colorectal cancer dissemination. World J Gastroenterol 14:1823–1827PubMedCrossRefGoogle Scholar
  13. Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20:119–125PubMedCrossRefGoogle Scholar
  14. Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929PubMedCrossRefGoogle Scholar
  15. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  16. Kleihues P, Burger PC, Scheithauer BW (1993) The new W. H. O. classification of brain tumours. Brain Pathol 3:255–268PubMedCrossRefGoogle Scholar
  17. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914PubMedCrossRefGoogle Scholar
  18. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281PubMedCrossRefGoogle Scholar
  19. Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q (2008) Merlin is a potent inhibitor of glioma growth. Cancer Res 68:5733–5742PubMedCrossRefGoogle Scholar
  20. Leone PE, Bello MJ, de Campos JM, Vaquero J, Sarasa JL, Pestaña A, Rey JA (1999) NF2 gene mutations and allelic status of 1p, 14q and 22q in sporadic meningiomas. Oncogene 18:2231–2239PubMedCrossRefGoogle Scholar
  21. Menon AG, Gusella JF, Seizinger BR (1990) Progress toward the isolation and characterization of the genes causing neurofibromatosis. Brain Pathol 1:33–40PubMedCrossRefGoogle Scholar
  22. Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC, Young DJ, Naoe T, Murre C, Jamieson CH, Wang JY (2008) BCRABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci USA 105:17967–17972PubMedCrossRefGoogle Scholar
  23. Monticelli S, Ansel KM, Lee DU, Rao A (2005) Regulation of gene expression in mast cells: micro-RNA expression and chromatin structural analysis of cytokine genes. Novartis Found Symp 271:179–187PubMedCrossRefGoogle Scholar
  24. Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646PubMedCrossRefGoogle Scholar
  25. Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701PubMedCrossRefGoogle Scholar
  26. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802PubMedCrossRefGoogle Scholar
  27. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW (1997) Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272:24735–24738PubMedCrossRefGoogle Scholar
  28. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907PubMedCrossRefGoogle Scholar
  29. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287:1606–1609PubMedCrossRefGoogle Scholar
  30. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851PubMedGoogle Scholar
  31. Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO (2009) Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/{beta}-catenin signaling pathway. Mol Cell Biol 29:5923–5940PubMedCrossRefGoogle Scholar
  32. Scheithauer BW, Erdogan S, Rodriguez FJ, Burger PC, Woodruff JM, Kros JM, Gokden M, Spinner RJ (2009) Malignant peripheral nerve sheath tumors of cranial nerves and intracranial contents: a clinicopathologic study of 17 cases. Am J Surg Pathol 33:325–338PubMedCrossRefGoogle Scholar
  33. Sekido Y (2010) Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci 101:1–6PubMedCrossRefGoogle Scholar
  34. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  35. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, Eldridge R, Kley N, Menon AG, Pulaski K (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800PubMedCrossRefGoogle Scholar
  36. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  37. Yi M, Horton JD, Cohen JC, Hobbs HH, Stephens RM (2006) WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data. BMC Bioinformatics 7:30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Arda Mizrak
    • 1
  • Ozlem Senol
    • 1
  • Baris Gokhan Ozdener
    • 1
  • Okay Saydam
    • 1
    • 2
  1. 1.Department of Neurology and RadiologyMassachusetts General Hospital-East/Harvard Medical SchoolBostonUSA
  2. 2.Molecular Neuro-Oncology Research Unit, Division of Neuro-Oncology, Department of PediatricsMedical University of ViennaViennaAustria

Personalised recommendations