Biocatalytic Reactions in Ionic Liquid Media

  • A. P. de los Ríos
  • F. J. Hernández-Fernández
  • L. J. Lozano
  • C. Godínez


Ionic liquids hold potential as green solvents because of their lack of vapour pressure, and are opening up a burgeoning new field of nonaqueous enzymo­logy. Remarkable results with respect to yield, enantioselectivity or enzyme stability have been observed using ionic liquids as reaction media, as compared to those observed in conventional organic solvents. In this work, a detailed and comprehensive revision of the versatility of ionic liquids as environmentally friendly green solvents for various biochemical transformations is presented.


Ionic Liquid Vinyl Acetate Mandelic Acid Kinetic Resolution Acyl Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the MICINN ENE2010-18687 and SENECA Foundation 15260/PI/10 grants.


  1. 1.
    Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRefGoogle Scholar
  2. 2.
    de los Ríos AP, Hernández FJ, Rubio M, Gómez D, Víllora G (2007) Stabilization of native penicillin G acylase by ionic liquids. J Chem Technol Biotechnol 82:190–195CrossRefGoogle Scholar
  3. 3.
    Ruiz A, de los Ríos AP, Hernández FJ, Janssen MHA, Schoevaart R, van Rantwijk F, Sheldon RA (2007) A cross-linked enzyme aggregate of Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Technol 40:1095–1099CrossRefGoogle Scholar
  4. 4.
    Lozano P, Piamtongkam R, Kohns K, de Diego T, Vaultier M, Iborra JL (2007) Ionic liquids improve citronellyl ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media. Green Chem 9:780–784CrossRefGoogle Scholar
  5. 5.
    Sheldon RA (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407CrossRefGoogle Scholar
  6. 6.
    Persson M, Bornscheuer UT (2003) Increased stability of an esterase from Bacillus subtilis in ionic liquids as compared to organic solvents. J Mol Catal B-Enzym 22:21–27CrossRefGoogle Scholar
  7. 7.
    Kim MJ, Choi MY, Lee JK (2003) Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity. J Mol Catal B-Enzym 26:115–118CrossRefGoogle Scholar
  8. 8.
    Deetlefs M, Seddon KR (2006) Ionic liquids: fact and fiction. Chim Oggi 24:16–23Google Scholar
  9. 9.
    Anderson EM, Karin M, Kirk O (1998) One biocatalyst—many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal Biotransf 16:181–204CrossRefGoogle Scholar
  10. 10.
    Madeira Lau R, van Rantwijk F, Seddon KR, Sheldon RA (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189–4191CrossRefGoogle Scholar
  11. 11.
    Lozano P, De Diego T, Carrié D, Vaultier M, Iborra JL (2003) Enzymatic ester synthesis in ionic liquids. J Mol Catal B: Enzym 21:9–13CrossRefGoogle Scholar
  12. 12.
    de los Ríos AP, Hernández-Fernández FJ, Martínez FA, Rubio M, Víllora G (2007) The effect of ionic liquid media on activity, selectivity and stability of Candida antarctica Lipase B in transesterification reactions. Biocatal Biotransf 25:151–156CrossRefGoogle Scholar
  13. 13.
    Vidyaa P, Chadhaa A (2009) The role of different anions in ionic liquids on Pseudomonas cepacia lipase catalyzed transesterification and hydrolysis. J Mol Catal B: Enzym 57:145–148CrossRefGoogle Scholar
  14. 14.
    Nara SJ, Harjani JR, Salunkhe MM (2002) Lipase-catalysed transesterification in ionic liquids and organic solvents: a comparative study. Tetrahedron Lett 43:2979–2982CrossRefGoogle Scholar
  15. 15.
    De Diego T, Lozano P, Abada MA, Steffenskya K, Vaultier M, Iborra JL (2009) On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. J Biotechnol 140:234–241CrossRefGoogle Scholar
  16. 16.
    Itoh T, Akasaki E, Kudo K, Shirakami S (2001) Lipase-catalyzed enantioselective acylation in the ionic liquid solvent system: reaction of enzyme anchored to the solvent. Chem Lett 3:262–263CrossRefGoogle Scholar
  17. 17.
    Schöfer SH, Kaftzik N, Wasserscheid P, Kragl U (2001) Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun 5:425–426CrossRefGoogle Scholar
  18. 18.
    Kielbasinski P, Albrycht M, Luczak J, Mikolajczyk M (2002) Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P-chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides. Tetrahedron Asymm 13:735–738CrossRefGoogle Scholar
  19. 19.
    Vafiadi C, Topakas E, Nahmias VR, Faulds CB, Christakopoulos P (2009) Feruloyl esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures. J Biotechnol 139:124–129CrossRefGoogle Scholar
  20. 20.
    Garcia S, Lourencüo NMT, Lousa D, Sequeira AF, Mimoso P, Cabral JMS, Afonso CAM, Barreiros S (2004) A comparative study of biocatalysis in non-conventional solvents: ionic liquids, supercritical fluids and organic media. Green Chem 6:466–470CrossRefGoogle Scholar
  21. 21.
    Eckstein M, Sesing M, Kragl U, Adlercreutz P (2002) At low water activity alpha-chymotrypsin is more active in an ionic liquid than in non-ionic organic solvents. Biotechnol Lett 24:867–872CrossRefGoogle Scholar
  22. 22.
    Lozano P, De Diego T, Guegan J-P, Vaultier M, Iborra JL (2001) Stabilization of α-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng 75:563–569CrossRefGoogle Scholar
  23. 23.
    Shah S, Gupta MN (2007) Obtaining high transesterification activity for subtilisin in ionic liquids. Biochim Biophys Acta 1770:94–98CrossRefGoogle Scholar
  24. 24.
    Laszlo JA, Compton DL (2001) Alpha-chymotrypsin catalysis in imidazolium-based ionic liquids. Biotechnol Bioeng 75:181–186CrossRefGoogle Scholar
  25. 25.
    Nakashima K, Maruyama T, Kamiya N, Goto M (2005) Comb-shaped poly(ethylene glycol)-modified subtilisin Carlsberg is soluble and highly active in ionic liquids. Chem Commun 13:4297–4299CrossRefGoogle Scholar
  26. 26.
    Kaftzik N, Wasserscheid P, Kragl U (2002) Use of ionic liquids to increase the yield and enzyme stability in the b-galactosidase catalysed synthesis of N-acetyllactosamine. Org Proc Res Dev 6:553–557CrossRefGoogle Scholar
  27. 27.
    Lang M, Kamrat T, Nidetzky B (2006) Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable beta-glycosylhydrolase CelB from Pyrococcus Furiosus. Biotechnol Bioeng 9:1093–1100CrossRefGoogle Scholar
  28. 28.
    Machado MF, Saraiva JM (2005) Thermal stability and activity regain of horseradish peroxidase in aqueous mixtures of imidazolium-based ionic liquids. Biotechnol Lett 27:1233–1239CrossRefGoogle Scholar
  29. 29.
    Okrasa K, Guibé-Jampel E, Therisod M (2003) Ionic liquids as a new reaction medium for oxidaseperoxidase- catalyzed sulfoxidation. Tetrahedron Asymm 14:2487–2490CrossRefGoogle Scholar
  30. 30.
    Sanfilippo C, D’Antona N, Nicolosi G (2004) Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett 26:1815–1819CrossRefGoogle Scholar
  31. 31.
    Hinckley G, Mozhaev VV, Budde C, Khmelnitsky YL (2002) Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol Lett 24:2083–2087CrossRefGoogle Scholar
  32. 32.
    Shipovskov S, Gunaratne HQN, Seddon KR, Stephens G (2008) Catalytic activity of laccases in aqueous solutions of ionic liquids. Green Chem 10:806–810CrossRefGoogle Scholar
  33. 33.
    Shi X, Zong M, Meng C, Guo YH (2005) Catalytic characteristics of horse liver alcohol dehydrogenase in a medium containing ionic liquid [bmim]Cl. Chin J Catal 26:982–986Google Scholar
  34. 34.
    Fujita K, Nakamura N, Igarashi K, Samejima M, Ohno H (2009) Biocatalytic oxidation of cellobiose in a hydrated ionic liquid. Green Chem 11:351–354CrossRefGoogle Scholar
  35. 35.
    Yang Z, Yue Y-J, Xing M (2008) Tyrosinase activity in ionic liquids. Biotechnol Lett 30:153–158CrossRefGoogle Scholar
  36. 36.
    Berberich JA, Kaar JL, Russell AJ (2003) Use of salt hydrate pairs to control water activity for enzyme catalysis in ionic liquids. Biotechnol Prog 19:1029–1032CrossRefGoogle Scholar
  37. 37.
    de Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL (2004) Fluorescence and CD spectroscopic analysis of the α-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Bioeng 88:916–924CrossRefGoogle Scholar
  38. 38.
    Yang Z, Russell AJ (1996) Fundamentals of non-aqueous enzymology. In: Koskinen AMP, Klibanov AM (eds) Enzymatic reactions in organic media. Blackie Academic & Professional, New York, pp 43–69CrossRefGoogle Scholar
  39. 39.
    Yang Y (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22CrossRefGoogle Scholar
  40. 40.
    Irimescu R, Kato K (2004) Lipase-catalyzed enantioselective reaction of amines with carboxylic acids under reduced pressure in non-solvent system and in ionic liquids. Tetrahedron Lett 45:523–525CrossRefGoogle Scholar
  41. 41.
    Kamal A, Chouhan G (2004) Chemoenzymatic synthesis of enantiomerically pure 1,2-diols employing immobilized lipase in the ionic liquid [bmim][PF6]. Tetrahedron Lett 45:8801–8805CrossRefGoogle Scholar
  42. 42.
    Lau RM, Sorgedrager MJ, Carrea G, van Rantwijk F (2004) Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6:483–487CrossRefGoogle Scholar
  43. 43.
    Yuan Y, Bai S, Sun Y (2006) Comparison of lipase-catalysed enantioselective esterification of (9)-menthol in ionic liquids and organic solvents. Food Chem 97:324–330CrossRefGoogle Scholar
  44. 44.
    van Rantwijk F, Secundo F, Sheldon RA (2006) Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem 8:282–286CrossRefGoogle Scholar
  45. 45.
    Nara SJ, Mohile SS, Harjani JR, Naik PU, Salunkhe MM (2004) Influence of ionic liquids on the rates and regioselectivity of lipase-mediated biotransformations on 3,4,6-tri-O-acetyl-d-glucal. J Mol Catal B: Enzym 28:39–43CrossRefGoogle Scholar
  46. 46.
    Park S, Kazlauskas RJ (2001) Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66:8395–8401CrossRefGoogle Scholar
  47. 47.
    Fujita K, MacFarlane DR, Forsyth M (2005) Protein solubilising and stabilising ionic liquids. Chem Commun 38:4804–4806CrossRefGoogle Scholar
  48. 48.
    Walker AJ, Bruce NC (2004) Cofactor-dependent enzyme catalysis in functionalized ionic solvents. Chem Commun 22:2570–2571CrossRefGoogle Scholar
  49. 49.
    Walker AJ, Bruce NC (2004) Combined biological and chemical catalysis in the preparation of oxycodone. Tetrahedron 60:561–568CrossRefGoogle Scholar
  50. 50.
    de Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL (2005) Understanding structure-­stability relationships of Candida antartica lipase B in ionic liquids. Biomacromolecules 6:1457–1464CrossRefGoogle Scholar
  51. 51.
    Forsyth SA, MacFarlane DR, Thomson RJ, von Itzstein M (2002) Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chem Commun 7:714–715CrossRefGoogle Scholar
  52. 52.
    Liu Q, Janssen MHA, van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39–42CrossRefGoogle Scholar
  53. 53.
    van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785CrossRefGoogle Scholar
  54. 54.
    de los Ríos AP, Hernández-Fernández FJ, Gómez D, Rubio M, Víllora G (2007) Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives. J Chem Technol Biotechnol 82:882–887CrossRefGoogle Scholar
  55. 55.
    Ha SH, Lan MN, Lee SH, Hwang SM, Koo Y-M (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb Technol 41:480–483CrossRefGoogle Scholar
  56. 56.
    van Rantwijk F, Madeira Lau R, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138CrossRefGoogle Scholar
  57. 57.
    Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125:4125–4131CrossRefGoogle Scholar
  58. 58.
    Lozano P, De Diego T, Gmouh S, Vaultier M, Iborra JL (2004) Criteria to design green enzymatic processes in ionic liquid/supercritical carbon dioxide system. Biotechnol Prog 20:661–669CrossRefGoogle Scholar
  59. 59.
    Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of z-aspartame in ionic liquid—an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16:1129–1131CrossRefGoogle Scholar
  60. 60.
    Lozano P, De Diego T, Gmouh S, Vaultier M, Iborra JL (2005) Dynamic structure–function relationship in enzyme stabilization by ionic liquids. Biocatal Biotransf 23:169–176CrossRefGoogle Scholar
  61. 61.
    Cull SG, Holbrey JD, Vargas-Mora V, Seddon KR, Lye GJ (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng 69:227–233CrossRefGoogle Scholar
  62. 62.
    Howarth J, James P, Dai J (2001) Immobilized baker’s yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix. Tetrahedron Lett 42:7517–7519CrossRefGoogle Scholar
  63. 63.
    Roberts NJ, Seago A, Lye GJ (2002) Biocatalytic routes to the efficient synthesis of pharmaceuticals in ionic liquids. In: Book of abstracts, international congress on biocatalysis, Hamburg, July 28–31, p 117Google Scholar
  64. 64.
    de los Ríos AP, Hernández-Fernández FJ, Tomás-Alonso F, Gómez D, Víllora G (2008) Synthesis of esters in ionic liquids. The effect of vinyl esters and alcohols. Process Biochem 43:892–895CrossRefGoogle Scholar
  65. 65.
    de los Ríos AP, Hernández-Fernández FJ, Tomás-Alonso F, Gómez D, Víllora G (2008) Synthesis of flavour esters using free Candida antarctica lipase B in ionic liquids. Flavour Frag J 23:319–322CrossRefGoogle Scholar
  66. 66.
    Ganske F, Bornscheuer UT (2005) Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH. J Mol Catal B: Enzym 36:40–42CrossRefGoogle Scholar
  67. 67.
    Lee SH, Nguyen HM, Koo Y-M, Ha SH (2008) Ultrasound-enhanced lipase activity in the synthesis of sugar ester using ionic liquids. Process Biochem 43:1009–1012CrossRefGoogle Scholar
  68. 68.
    Arai S, Nakashima K, Tanino T, Ogino C, Kondo A, Fukuda H (2010) Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme Microb Technol 46:51–55CrossRefGoogle Scholar
  69. 69.
    Nara SJ, Harjani JR, Salunkhe MM, Mane AT, Wadgaonkar PP (2003) Lipase-catalysed polyester synthesis in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Tetrahedron Lett 44:1371–1373CrossRefGoogle Scholar
  70. 70.
    Gorke JT, Okrasa K, Louwagie A, Kazlauskas RJ, Srienc F (2007) Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids. J Biotechnol 132:306–313CrossRefGoogle Scholar
  71. 71.
    Itoh T, Akasaki E, Nishimura Y (2002) Efficient lipase-catalyzed enantioselective acylation under reduced pressure conditions in an ionic liquid solvent system. Chem Lett 31:154–155CrossRefGoogle Scholar
  72. 72.
    Itoh T, Nishimura Y, Ouchi N, Hayase S (2003) 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate: the most desirable ionic liquid solvent for recycling use of enzyme in lipase-catalyzed transesterification using vinyl acetate as acyl donor. J Mol Catal B: Enzym 26:41–45CrossRefGoogle Scholar
  73. 73.
    Noel M, Lozano P, Vaultier M, Iborra JL (2004) Kinetic resolution of rac-2-pentanol catalyzed by Candida antarctica lipase B in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Lett 26:301–306CrossRefGoogle Scholar
  74. 74.
    Habulin M, Knez Z (2009) Optimization of (R, S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. J Mol Catal B: Enzym 58:24–28CrossRefGoogle Scholar
  75. 75.
    Kaftzik N, Kroutil W, Faber K, Kragl U (2004) Mandelate racemase activity in ionic liquids: scopes and limitations. J Mol Catal A: Chem 214:107–112CrossRefGoogle Scholar
  76. 76.
    Ulbert O, Fráter T, Bélafi-Bakó K, Gubicza L (2004) Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents. J Mol Catal B: Enzym 31:39–45CrossRefGoogle Scholar
  77. 77.
    Contesini FJ, de Oliveira CP (2006) Esterification of (RS)-Ibuprofen by native and commercial lipases in a two-phase system containing ionic liquids. Tetrahedron Asymm 17:2069–2073CrossRefGoogle Scholar
  78. 78.
    Fehér E, Illeová V, Kelemen-Horváth I, Bélafi-Bakó K, Polakovĭc M, Gubicza L (2008) Enzymatic production of isoamyl acetate in an ionic liquid-alcohol biphasic system. J Mol Catal B: Enzym 50:28–33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • A. P. de los Ríos
    • 1
  • F. J. Hernández-Fernández
    • 1
  • L. J. Lozano
    • 1
  • C. Godínez
    • 1
  1. 1.Department of Chemical and Environmental EngineeringTechnical University of CartagenaCartagena, MurciaSpain

Personalised recommendations