Application of Ionic Liquids in Extraction and Separation of Metals

Chapter

Abstract

Ionic liquids as green solvents have shown important application in extraction and separation of metals. In this chapter, the new application perspective and the important fundamental and applied studies of the extraction and separation of metals in ionic liquids which include metal oxide processing, mineral processing, electrodeposition of metals (especially reactive metals such as Al, Mg, and Ti), and extraction of metal ions are presented.

Keywords

Ionic Liquid Active Metal Organic Electrolyte Deep Eutectic Solvent Aluminum Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (No. 50904031), the Natural Science Foundation of Yunnan Province (2008E0049M), the Science Foundation of the Education Department of Yunnan Province (07Z40082), and the Science Foundation of Kunming University of Science and Technology (2007–2016).

References

  1. 1.
    Fray DJ, Chen GZ (2004) Reduction of titanium and other metal oxides using electrode oxidation. Mater Sci Technol 20:295–300CrossRefGoogle Scholar
  2. 2.
    Cherginets V (2001) In: Wypych G (ed) Handbook of solvents. Chem Tec Publishing, TorontoGoogle Scholar
  3. 3.
    Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2083CrossRefGoogle Scholar
  4. 4.
    Li RX (2004) Green solvents-synthesis and application of ionic liquids. Chemical Industry Engineering Press, Beijing (in Chinese)Google Scholar
  5. 5.
    Zhang SJ, Lv XM (2006) Ionic liquids from fundamental study to industrial application. Science Press, Beijing (in Chinese)Google Scholar
  6. 6.
    Deng YQ (2006) Ionic liquids-properties, preparation and application. China SINO-PEC Press, Beijing (in Chinese)Google Scholar
  7. 7.
    Whitehead JA, Lawrence GA, Mccluskey A (2004) A green leaching: recyclable and selective leaching of gold-bearing ore in an ionic liquid. Green Chem 6:313–315CrossRefGoogle Scholar
  8. 8.
    Thied RC, Seddon KR, Pitner WR et al (1999) Nuclear fuel reprocessing. WO 99 41752Google Scholar
  9. 9.
    Zhang M, Kamavaram V, Reddy RG (2005) Aluminum electrowinning in ionic liquids at low temperature. Light Met 2005:583–588Google Scholar
  10. 10.
    Wu B, Reddy RG, Rogers RD (2002) Production, refining and recycling of lightweight and reactive metals in ionic liquids. US 2002070122Google Scholar
  11. 11.
    Mccluskey A, Lawrance GA, Leitch SK et al (2002) Ionic Liquids and Metal Ions: From Green Chemistry to Ore Refining. In: Rogers RD, Seddon KR (eds) Ionic liquids industrial applications for green chemistry. American Chemical Society, Washington, DCGoogle Scholar
  12. 12.
    Fray DJ (2001) Emerging molten salt technologies for metals production. JOM J Miner Met Mater 53:26–31Google Scholar
  13. 13.
    Endres F, MacFarlane D, Abbott AP (2008) Electrodeposition from ionic liquids. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  14. 14.
    Dai S, Shin YS, Toth LM et al (1997) Comparative Uv-vis studies of uranyl chloride complex in two basic ambient-temperature melt systems. Inorg Chem 36:4900–4902CrossRefGoogle Scholar
  15. 15.
    Bell RC, Castleman AW, Thorn DL (1999) Vanadium oxide complexes in room-temperature chloroaluminate molten salts. Inorg Chem 38:5709–5715CrossRefGoogle Scholar
  16. 16.
    Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003:70–77CrossRefGoogle Scholar
  17. 17.
    Abbott AP, Boothby D, Capper G et al (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147CrossRefGoogle Scholar
  18. 18.
    Abbott AP, Capper G, Davies DL et al (2006) Processing metal oxides using ionic liquids. Trans Inst Min Met C 115:115–119Google Scholar
  19. 19.
    Abbott AP, Frisch G, Hartley J et al (2011) Processing of metals and metal oxides using ionic liquids. Green Chem 13:471–481CrossRefGoogle Scholar
  20. 20.
    Abbott AP, Capper G, Davies DL et al (2006) Solubility of metal oxides in deep eutectic solvents based on choline chloride. J Chem Eng 51:1280–1282Google Scholar
  21. 21.
    Nockemann P, Thijs B, Pittois S et al (2006) Task-specific ionic liquid for solubilizing metal oxides. J Phys Chem B 110:20978–20992CrossRefGoogle Scholar
  22. 22.
    Nockemann P, Thijs B, Tatjana N (2008) Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides. Inorg Chem 47:9987–9999CrossRefGoogle Scholar
  23. 23.
    Ma JH, Li YP, Li HQ et al (2007) Synthesis of 1-ethyl-3-methylimidazolium hydrogen sulfate and its application in the electrolysis of aluminum. Chinese J Process Eng 7:1083–1088Google Scholar
  24. 24.
    Whitehead JA, Zhang J, Pereira N et al (2007) Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores. Hydrometallurgy 88:109–120CrossRefGoogle Scholar
  25. 25.
    Luczak J, Joskowska M, Hupka J (2008) Imidazolium ionic liquids in mineral processing. Physicochem Probl Miner Process 42:223–236Google Scholar
  26. 26.
    Dong TG, Hua YX, Zhang QB et al (2009) Leaching of chalcopyrite with Brønsted acidic ionic liquid at ambient pressure and low temperature. Hydrometallurgy 99:33–38CrossRefGoogle Scholar
  27. 27.
    Abbott AP, Mckenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8:4265–4279CrossRefGoogle Scholar
  28. 28.
    Hines CC, Cordes DB, Griffin ST et al (2008) Flexible coordination environments of lanthanide complexes grown from chloride-based ionic liquids. New J Chem 32:872–877CrossRefGoogle Scholar
  29. 29.
    Schubert T, El Abedin SZ, Abbott AP et al (2008) Electrodeposition of metals. In: Endres F, MacFarlane D, Abbott AP (eds) Electrodeposition from ionic liquids. Wiley-VCH, Weinheim, GermanGoogle Scholar
  30. 30.
    Sun IW, Chen PY (2008) Electrodeposition of alloys. In: Endres F, MacFarlane D, Abbott AP (eds) Electrodeposition from ionic liquids. Wiley, WeinheimGoogle Scholar
  31. 31.
    Tian GC, Li J, Hua YX (2009) Application of ionic liquids in metallurgy of nonferrous metals. Chinese J Process Eng 9:200–208Google Scholar
  32. 32.
    Tian GC, Li J, Hua YX (2010) Application of ionic liquids in hydrometallurgy of nonferrous metal. Trans Nonferrous Met Soc China 20:513–520CrossRefGoogle Scholar
  33. 33.
    Wilkes JS (2002) Ionic liquids in perspective: The past with an eye toward the industrial future, in Robin D. Rogers (Editor), Kenneth R. Seddon (eds), Ionic Liquids Industrial Applications for Green Chemistry, American Chemical Society, Washington D C, Vol 818, p 214Google Scholar
  34. 34.
    Zhao Y, Vandernoot TJ (1997) Electrodeposition of aluminium from room temperature AlCl3-TMPAC molten salts. Electrochim Acta 42:3–8CrossRefGoogle Scholar
  35. 35.
    Endres F, Bukowski M, Hempelmann R et al (2003) Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew Chem Int Ed 42:3428–3432CrossRefGoogle Scholar
  36. 36.
    Nanjundiah C, Shimizu K, Osteryoung RA (1982) Electrochemical studies of Fe(II) and Fe(III) in an aluminum chloride-butylpyridinium chloride ionic liquid. J Electrochem Soc 11:2474–2478CrossRefGoogle Scholar
  37. 37.
    Lipsztajn M, Osteryoung RA (1985) Electrochemistry in neutral ambient-temperature ionic liquids 1 studies of iron(III), neodymium(III), and lithium(I). Inorg Chem 24:716–719CrossRefGoogle Scholar
  38. 38.
    Carlin RT, De Long HC, Fuller J (1998) Microelectrode evaluation of transition metal-aluminum alloy electrodepositions in chloroaluminate ionic liquids. J Electrochem Soc 145:24–29CrossRefGoogle Scholar
  39. 39.
    Mitchell JA, Pitner WR, Hussey CL (1996) Electrodeposition of cobalt and cobalt-aluminum alloys from a room temperature chloroaluminate molten salt. J Electrochem Soc 143:3448–3451CrossRefGoogle Scholar
  40. 40.
    Nanjundiah C, Osteryoung RA (1983) Electrochemical studies of Cu(I) and Cu(II) in an aluminum chloride-n-(n-butyl)pyridinium chloride ionic liquid. J Electrochem Soc 130:1312–1315CrossRefGoogle Scholar
  41. 41.
    Endres F, Schweizer A (2000) The electrodeposition of copper on Au(111) and on HOPG from the 66/34 mol% aluminium chloride/1-butyl-3-methylimidazolium chloride room temperature molten salt: an EC-STM study. Phys Chem Chem Phys 2:5455–5460CrossRefGoogle Scholar
  42. 42.
    Pitner WR, Hussey CL (1997) Electrodeposition of zinc from the Lewis acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt. J Electrochem Soc 144:3095–3099CrossRefGoogle Scholar
  43. 43.
    Chen PY, Lin YF, Sun IW (1999) Electrochemistry of gallium in the Lewis acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride room-temperature molten salt. J Electrochem Soc 146:3290–3294CrossRefGoogle Scholar
  44. 44.
    Verbrugge MW, Carpenter MK (1990) Microelectrode study of gallium deposition from chlorogallate melts. AIChE J 36:1097–1101CrossRefGoogle Scholar
  45. 45.
    De Long HC, Wilkes JS, Carlin RT (1994) Electrodeposition of palladium and adsorption of palladium chloride onto solid electrodes from room temperature molten salts. J Electrochem Soc 141:1000–1004CrossRefGoogle Scholar
  46. 46.
    Xu XH, Hussey CL (1992) The electrochemistry of gold at glassy carbon in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt. J Electrochem Soc 139:3103–3106CrossRefGoogle Scholar
  47. 47.
    Schreiter ER, Stevens JE, Ortwerth MF (1999) Gold compounds as ionic liquids synthesis, structures, and thermal properties of n, n-dialkylimidazolium tetrachloroaurate salts. Inorg Chem 38:3935–3940CrossRefGoogle Scholar
  48. 48.
    Hu XH, Hussey CL (1992) Electrodeposition of silver on metallic and nonmetallic electrodes from the acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt. J Electrochem Soc 139:1295–1300CrossRefGoogle Scholar
  49. 49.
    Katayama Y, Dan S, Miura T (2001) Electrochemical behavior of silver in 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt. J Electrochem Soc 148:C102–C105CrossRefGoogle Scholar
  50. 50.
    Chen PY, Sun IW (2000) Electrochemistry of Cd (II) in the basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate room temperature molten salt. Electrochim Acta 45:3163–3167CrossRefGoogle Scholar
  51. 51.
    Liu JY, Sun IW (1997) Electrochemical study of the properties of indium in room temperature chloroaluminate molten salts. J Electrochem Soc 144:140–145CrossRefGoogle Scholar
  52. 52.
    Xu XH, Hussey CL (1993) The electrochemistry of tin in the aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt. J Electrochem Soc 140:618–622CrossRefGoogle Scholar
  53. 53.
    Habboush DA, Osteryoung RA (1984) Paramagnetic hydride complexes of niobium(IV) and tantalum(IV). Inorg Chem 23:1726–1730CrossRefGoogle Scholar
  54. 54.
    Jeng EGS, Sun IW (1997) Electrochemistry of tellurium(iv) in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt. J Electrochem Soc 144:2369–2374CrossRefGoogle Scholar
  55. 55.
    Tsuda T, Hussey CL, Stafford GR (2003) Electrochemistry of titanium and the electrodeposition of Al–Ti alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt. J Electrochem Soc 150:C234–C237CrossRefGoogle Scholar
  56. 56.
    Ali MR, Nishikata A, Tsuru T (1997) Electrodeposition of aluminum–chromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors. Electrochim Acta 42:2347–2351CrossRefGoogle Scholar
  57. 57.
    Xu XH, Hussey CL (1993) The electrochemistry of mercury at glassy carbon and tungsten electrodes in the aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt. J Electrochem Soc 140:1226–1230CrossRefGoogle Scholar
  58. 58.
    Gray GE, Kohl PA, Winnick J (1995) Stability of sodium electrodeposited from a room temperature chloroaluminate molten salt. J Electrochem Soc 142:3636–3640CrossRefGoogle Scholar
  59. 59.
    Piersma BJ (1994) The electrodeposition of Al–Cu alloys from room-temperature chloroaluminate electrolytes. Proc Electrochem Soc 94:415–428Google Scholar
  60. 60.
    Jeng EGS, Sun IW (1998) Electrochemistry of thallium in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt. J Electrochem Soc 145:1196–1202CrossRefGoogle Scholar
  61. 61.
    Tsuda T, Ito Y (2000) Electrochemical behavior of lanthanum ion in lach saturated aich-emic room temperature molten salts. Proc Electrochem Soc 99–41:100–140Google Scholar
  62. 62.
    Wicelinski SP, Gale RJ (1987) Formation of GaAs by annealing of two-layer Ga-As electrodeposits. Proc Electrochem Soc 134:262–268CrossRefGoogle Scholar
  63. 63.
    Carpenter MK, Verbrugge MW (1987) Some experimental aspects of the cadmium–tellurium electrochemical codeposition. J Electrochem Soc 134:3404–3409Google Scholar
  64. 64.
    Hussey CL, Xu X (1991) Electrodissolution and electrodeposition of lead in an acidic room temperature chloroaluminate molten salt. J Electrochem Soc 138:1886–1890CrossRefGoogle Scholar
  65. 65.
    Heerman L, Olieslager WD (1991) Electrochemistry of bismuth in a 67 mole% alcl3-33 mole% n-(n-butyl)pyridinium chloride room temperature molten salt. J Electrochem Soc 138:1372–1376CrossRefGoogle Scholar
  66. 66.
    Zell CA, Endres F, Freyland W (1999) Electrochemical in-situ STM study of phase formation during Ag and Al electrodeposition on Au(111) from a room temperature molten salt. Phys Chem Chem Phys 1:697–702CrossRefGoogle Scholar
  67. 67.
    Endres F, Freyland W (1998) Electrochemical scanning tunneling microscopy investigation of HOPG and silver electrodeposition on HOPG from the acid room temperature molten salt aluminium chloride – 1-methyl-3-butylimidazolium chloride. J Phys Chem B 102:10229–10236CrossRefGoogle Scholar
  68. 68.
    Fuller J, Carlin RT, Osteryoung RA et al (1998) Anodization and speciation of magnesium in chloride-rich room temperature ionic liquids. J Electrochem Soc 145:1598–1605CrossRefGoogle Scholar
  69. 69.
    Li JC, Nan SH, Jiang Q (1998) Study of the electrodeposition of Al–Mn amorphous alloys from molten salts. Surf Coat Technol 106:135–139CrossRefGoogle Scholar
  70. 70.
    Pitner WR, Hussey CL, Stafford GR (1996) Electrodeposition of nickel–aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt. J Electrochem Soc 143:130–135CrossRefGoogle Scholar
  71. 71.
    Zell CA, Freyland W (2001) In situ STM and STS study of NixAl1–x alloy formation on Au(111) by electrodeposition from a molten salt electrolyte. Chem Phys Lett 337:293–298CrossRefGoogle Scholar
  72. 72.
    Tierney BJ, Pitner WR, Mitchell JA et al (1998) Electrodeposition of copper and copper–aluminum alloys from a room-temperature chloroaluminate molten salt. J Electrochem Soc 145:3110–3116CrossRefGoogle Scholar
  73. 73.
    Carlin RT, Trulove PC, De Long HC et al (1996) Electrodeposition of cobalt–aluminum alloys from room temperature chloroaluminate molten salt. J Electrochem Soc 143:2747–2752CrossRefGoogle Scholar
  74. 74.
    Guo N, Gio J, Xiong S (1998) Electrodeposition of Al–Ti alloy and its properties. Corr Sci Prot Tech 10:290–296Google Scholar
  75. 75.
    Koura N, Kato T, Yumoto E (1994) Electrodeposition of Al–Nb from room temperature chloroaluminate molten salt. Hyomen Gijutsu 45:805–810Google Scholar
  76. 76.
    Cheek GT, De Long HC, Trulove PC (2000) Electrodeposition of niobium and tantalum from a room-temperature molten salt system. Proc Electrochem Soc 99–41:527–533Google Scholar
  77. 77.
    Wei D, Okido M (1997) Room-temperature ionic liquid for lanthanum electrodeposition. Curr Top Electrochem 5:21–27Google Scholar
  78. 78.
    Galasiu I, Galasiu R, Thonstad J (1999) Nonaqueous electrochemistry. Marcel Dekker, New YorkGoogle Scholar
  79. 79.
    Jeng EGS, Sun IW (1997) Electrochemical study of the properties of indium in room temperature chloroaluminate molten salts. J Electrochem Soc 144:140–146CrossRefGoogle Scholar
  80. 80.
    Bonhote P, Dias A, Papageorgiou N et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1173CrossRefGoogle Scholar
  81. 81.
    Fuller J, Carlin RT (1998) In: Trulove PC, De Long HC (eds) Molten salts. Electrochemical Society Proceedings Series, PenningtonGoogle Scholar
  82. 82.
    Abbott AP, Frisch G, Ryder KS (2008) Metal complexation in ionic liquids. Annu Rep Prog Chem A Inorg Chem 102:21–45CrossRefGoogle Scholar
  83. 83.
    Zein El Abedin S, Endres F (2006) Electrodeposition of nano- and microcrystalline aluminium in some water and air stable ionic liquid. Chem Phys Chem 7:58–65CrossRefGoogle Scholar
  84. 84.
    Abbott AP, Capper G, Davies DL et al (2004) Ionic liquids formed from hydrated metal salts. Chem Eur J 10:3769–3775CrossRefGoogle Scholar
  85. 85.
    Abbott AP, Capper G, McKenzie KJ et al (2007) Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J Electroanal Chem 599:288–294CrossRefGoogle Scholar
  86. 86.
    Matsumoto H, Sakaebe H, Tatsumi K (2005) Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J Power Sources 146:45–56CrossRefGoogle Scholar
  87. 87.
    Zheng H, Jiang K, Abe T, Ogumi Z (2006) Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolyte. Carbon 44:203–208CrossRefGoogle Scholar
  88. 88.
    Egashira M, Okada S, Yamaki J et al (2004) The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J Power Sources 138:240–246CrossRefGoogle Scholar
  89. 89.
    Egashira M, Nakagawa M, Watanabe I et al (2005) Cyano-containing quaternary ammonium-based ionic liquid as a ‘co-solvent’ for lithium battery electrolyte. J Power Sources 146:685–692CrossRefGoogle Scholar
  90. 90.
    Katayama Y, Morita T, Yamagata M et al (2003) Electrodeposition of metallic lithium on a tungsten electrode in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfone)imide room-temperature molten salt. Electrochemistry 71:1033–1039Google Scholar
  91. 91.
    Howlett PC, MacFarlane DR, Hollenkamp AF (2004) High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid State 7:A97–A102CrossRefGoogle Scholar
  92. 92.
    Byrne N, Howlett PC, MacFarlane DR et al (2005) The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries. Adv Mater 17:2497–2505CrossRefGoogle Scholar
  93. 93.
    Yuan LX, Feng JK, Ai XP et al (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8:610–618CrossRefGoogle Scholar
  94. 94.
    Xu J, Yang J, NuLi Y et al (2006) Additive-containing ionic liquid electrolytes for secondary lithium battery. J Power Sources 160:621–628CrossRefGoogle Scholar
  95. 95.
    Chen PY, Hussey CL (2004) Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethylammonium bis ((trifluoromethyl) sulfonyl) imide room-temperature ionic liquid. Electrochim Acta 49:5125–5132CrossRefGoogle Scholar
  96. 96.
    Chen PY, Hussey CL (2005) Electrochemistry of ionophore-coordinated Cs and Sr ions in the tri-1-butylmethylammoniumbis((trifluoromethyl) sulfonyl) imide ionic liquid. Electrochim Acta 50:2533–2536CrossRefGoogle Scholar
  97. 97.
    NuLi Y, Yang J, Wang J et al (2005) Additive-containing ionic liquid electrolytes for secondary lithium battery. Electrochem Solid State 8:C166–C172CrossRefGoogle Scholar
  98. 98.
    Mukhopadhyay CL, Aravinda D, Freyland W (2005) Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide. Electrochim Acta 50:1275–1282CrossRefGoogle Scholar
  99. 99.
    Matsunaga M, Matsuo T, Morimitsu M (2002) In: Trulove PC, De Long HC, Mantz RA et al (eds) Proceedings of the twelfth international symposium on molten salts, PV2002-19. The Electrochemical Society, Inc., PenningtonGoogle Scholar
  100. 100.
    Abedin SZE, Farag HK, Moustafa EM et al (2005) Electroreduction of tantalum fluoride in a room temperature ionic liquid at variable temperatures. Phys Chem Chem Phys 7:2333–2339Google Scholar
  101. 101.
    Yamagata M, Tachikawa N, Katayama Y et al (2005) Electrochemical behavior of iron(II) species in a hydrophobic room temperature molten salt. Electrochemistry 73:564–566Google Scholar
  102. 102.
    Fukui R, Katayama Y, Miura T (2005) Electrodeposition of cobalt from a hydrophobic room temperature molten salt system. Electrochemistry 73:567–570Google Scholar
  103. 103.
    Chen PY, Hussey CL (2007) The electrodeposition of Mn and Zn–Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid. Electrochim Acta 52:1857–1862CrossRefGoogle Scholar
  104. 104.
    Chang JK, Tsai WT, Chen PY et al (2007) Preparation of manganese thin film in room-temperature butylmethylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its application for supercapacitors. Electrochem Solid State 10:A9–A14CrossRefGoogle Scholar
  105. 105.
    Murase K, Nitta K, Hirato T et al (2001) Electrochemical behavior of copper in trimethyl-n-hexylammonium bis((trifluoromethyl)sulfonyl)amide, an ammonium imide-type room temperature molten salt room temperature molten salt. J Appl Electrochem 31:1089–1093CrossRefGoogle Scholar
  106. 106.
    Abedin SZE, Saad AY, Farag HK et al (2007) Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures. Electrochim Acta 52:2746–2752CrossRefGoogle Scholar
  107. 107.
    Yamamoto H, Kinoshita H, Kimura M et al (2006) Electrodeposition of Zn from trimethyl propylammonium bis (trifluoromethylsulfonyl) imide organic molten salt. Electrochemistry 74:370–375 (in Japanese)Google Scholar
  108. 108.
    Abedin ZE, Moustafa EM, Hempelmann R (2005) Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochem Commun 7:1116–1120Google Scholar
  109. 109.
    Aldous L, Silvester DS, Villagrán C et al (2006) Electrochemical studies of gold and chloride in ionic liquids. New J Chem 30:1576–1682CrossRefGoogle Scholar
  110. 110.
    Katayama Y, Yokomizo M, Miura T et al (2001) Preparation of a novel fluorosilicate salt for electrodeposition of silicon at low temperature. Electrochemistry 69:834–840Google Scholar
  111. 111.
    Abedin SZE, Borissenko N, Endres F (2004) Electrodeposition of nanoscale silicon in a room temperature ionic liquid. Electrochem Commun 6:510–518CrossRefGoogle Scholar
  112. 112.
    Borissenko N, Abedin SZE, Endres F (2006) In situ STM investigation of gold reconstruction and of silicon electrodeposition on Au(111) in the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 110:6250–6256CrossRefGoogle Scholar
  113. 113.
    Katase T, Kurosaki R, Murase K et al (2006) Formation of Cu–Sn alloy layer by contact deposition using quaternary ammonium-imide-type ionic liquid. Electrochem Solid State 9:C69–C75CrossRefGoogle Scholar
  114. 114.
    Boxall DL, Osteryoung RA (2002) Electrochemical properties of alkali metals in 1-butyl-3-methylimidazolium hexafluorophosphate. J Electrochem Soc 149:E185–E192CrossRefGoogle Scholar
  115. 115.
    Endres F, Schrodt C (2000) In situ STM studies on germanium tetraiodide electroreduction on Au(111) in the room temperature molten salt 1-butyl-3-methylimidazolium hexafluorophosphate. Phys Chem Chem Phys 2:5517–5522CrossRefGoogle Scholar
  116. 116.
    Endres F (2001) Electrodeposition of a thin germanium film on gold from a room temperature ionic liquid. Phys Chem Chem Phys 3:3165–3170CrossRefGoogle Scholar
  117. 117.
    Endres F, Abedin SZE (2002) Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid. Chem Commun 2002:892–894CrossRefGoogle Scholar
  118. 118.
    Endres F (2002) Electrochem electrodeposition of nanosized germanium from GeBr4 and GeCl4 in an ionic liquid. Solid-State Lett 5:C38–C42CrossRefGoogle Scholar
  119. 119.
    Endres F, Abedin SZE (2002) Nanoscale electrodeposition of germanium on Au(111) from an ionic liquid: an in situ STM study of phase formation, part I: Ge from GeBr4. Phys Chem Chem Phys 4:1640–1648CrossRefGoogle Scholar
  120. 120.
    Endres F, Abedin SZE (2002) Nanoscale electrodeposition of germanium on Au(111) from an ionic liquid: an in situ STM study of phase formation, part II: Ge from GeCl4. Phys Chem Chem Phys 4:1649–1654CrossRefGoogle Scholar
  121. 121.
    Freyland W, Zell CA, Abedin SZE et al (2003) Nanoscale electrodeposition of metals and semiconductors from ionic liquids. Electrochim Acta 48:3053–3058CrossRefGoogle Scholar
  122. 122.
    Nuli Y, Yang J, Wu R (2005) Reversible deposition and dissolution of magnesium from bmimbf4 ionic liquids. Electrochem Commun 7:1105–1110CrossRefGoogle Scholar
  123. 123.
    Hsiu SI, Tai CC, Sun IW (2006) Electrodeposition of palladium–indium from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid. Electrochim Acta 51:2607–2612CrossRefGoogle Scholar
  124. 124.
    Tai CC, Su FY, Sun IW (2005) Electrodeposition of palladium–silver in a Lewis basic 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid. Electrochim Acta 50:5504–5509CrossRefGoogle Scholar
  125. 125.
    Su FY, Huang JF, Sun IW (2004) Galvanostatic deposition of palladium–gold alloys in a Lewis basic EMI-Cl-BF4 ionic liquid. J Electrochem Soc 151:C811–C816CrossRefGoogle Scholar
  126. 126.
    Chen PY, Sun IW (1999) Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt. Electrochim Acta 45:441–450CrossRefGoogle Scholar
  127. 127.
    Wang JG, Tang J, Fu YC et al (2007) STM tip-induced nanostructuring of Zn in an ionic liquid on Au(111) electrode surfaces. Electrochem Commun 9:633–639CrossRefGoogle Scholar
  128. 128.
    Yang MH, Yang MC, Sun IW (2003) Electrodeposition of indium antimonide from the water-stable 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate ionic liquid. J Electrochem Soc 150:C544–C550CrossRefGoogle Scholar
  129. 129.
    Morimitsu M, Nakahara Y, Matsunaga M (2005) Electrodeposition of indium–tin alloys from EMIBF4Cl melts. Electrochemistry 73:754–760Google Scholar
  130. 130.
    Morimitsu M, Nakahara Y, Iwaki Y et al (2003) Electrodeposition of tin from EMIBF4-Cl room temperature molten salts. J Min Met 39B:59–67CrossRefGoogle Scholar
  131. 131.
    Yang MH, Sun IW (2003) Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid. J Appl Electrochem 33:1077–1082CrossRefGoogle Scholar
  132. 132.
    Huang JF, Sun IW (2004) Nonanomalous electrodeposition of zinc–iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. J Electrochem Soc 151:C8–C15CrossRefGoogle Scholar
  133. 133.
    Koura N, Matsumoto S, Idemoto Y (1998) Electrodeposition of amorphous Co–Zn alloy from ambient-temperature molten salt electrolytes of EMIC system. J Surf Fin Soc Jpn 49:1215–1220 (in Japanese)CrossRefGoogle Scholar
  134. 134.
    Chen PY, Sun IW (2001) Electrodeposition of cobalt and zinc–cobalt alloys from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochim Acta 46:1169–1174CrossRefGoogle Scholar
  135. 135.
    Chen PY, Lin MC, Sun IW (2000) Electrodeposition of Cu–Zn alloy from a Lewis Acidic ZnCl2-EMIC molten salt. J Electrochem Soc 147:3350–3356CrossRefGoogle Scholar
  136. 136.
    Abbott AP, Capper G, Davies DL et al (2001) Novel ambient temperature ionic liquids for zinc and zinc alloy electrodeposition. Trans Inst Met Finish 79:204–206Google Scholar
  137. 137.
    Lin YF, Sun IW (1999) Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochim Acta 44:2771–2778CrossRefGoogle Scholar
  138. 138.
    Iwagishi T, Yamamoto H, Koyama K et al (2002) Effect of water content and the effect of adding ethylene glycol on the 1 – ethyl-3-methylimidazolium bromide molten salt electrodeposition of Zn using zinc bromide 70:671–678 (in Japanese)Google Scholar
  139. 139.
    Huang JF, Sun IW (2002) Electrochemical study of cadmium in acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids. J Electrochem Soc 149:E348–E352CrossRefGoogle Scholar
  140. 140.
    Lin MC, Chen PY, Sun IW (2001) Electrodeposition of zinc telluride from a zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. J Electrochem Soc 148:C653–C659CrossRefGoogle Scholar
  141. 141.
    Koura N, Endo T (1995) Electrodeposition of Co–Zn alloy from ambient temperature molten salt electrolytes. J Surf Fin Soc Jpn 46:1191, in JapaneseCrossRefGoogle Scholar
  142. 142.
    Koura N, Endo T, Idemoto Y (1998) Electrodeposition of amorphous Co–Zn alloy from organic solvent added ambient temperature molten salt electrolytes. J Surf Fin Soc Jpn 49:913–918 (in Japanese)CrossRefGoogle Scholar
  143. 143.
    Zhu Q, Hussey CL (2002) Galvanostatic pulse plating of bulk Cu–Al alloys on nickel electrodes from room-temperature chloroaluminate molten salts containing benzene. J Electrochem Soc 149:C268–C274CrossRefGoogle Scholar
  144. 144.
    Noda A, Susan MA, Kudo K et al (2003) Brønsted acid–base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B 107:4024–4030CrossRefGoogle Scholar
  145. 145.
    Huang JF, Sun IW (2004) Formation of nanoporous platinum by selective anodic dissolution of PtZn surface in Lewis acidic zinc chloride -1-ethyl-3-methylimidazolium chloride ionic liquid. Chem Mater 16:1829–1835CrossRefGoogle Scholar
  146. 146.
    Huang JF, Sun IW (2004) Electrodeposition of PtZn in a Lewis acidic ZnCl2-1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim Acta 49:3251–3258CrossRefGoogle Scholar
  147. 147.
    Lin YW, Tai CC, Sun IW (2007) Electrochemical preparation of porous copper surfaces in zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. J Electrochem Soc 154:D316–D324CrossRefGoogle Scholar
  148. 148.
    Yeh FH, Tai CC, Huang JF et al (2006) Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. J Phys Chem B 110:5215–5220CrossRefGoogle Scholar
  149. 149.
    Hsu HY, Yang CC (2003) Conductivity electrodeposition and magnetic property of cobalt (II) and dysprosium chloride in zinc chloride-1-ethyl-3-methylimidazolium chloride room temperature molten salt. Z Naturforsch 58B:139–145Google Scholar
  150. 150.
    Tong Y, Liu P, Liu L et al (2001) Electrochemical Behaviors of Fe2+ and Sm3+ in urea-NaBr low temperature melt and their inductive codeposition. J Rare Earths 19:275–280Google Scholar
  151. 151.
    Liu P, Du YP, Yang QQ et al (2006) Electrochemical behavior of Fe (II) in acetamide-urea-NaBr-KBr melt and magnetic properties of inductively codeposited Nd–Fe film. Electrochim Acta 52:710–718CrossRefGoogle Scholar
  152. 152.
    Liu P, Du YP, Yang QQ et al (2006) Induced codeposition of Sm–Co amorphous films in urea melt and their magnetism. J Electrochem Soc 153:C57–C65CrossRefGoogle Scholar
  153. 153.
    Abbott AP, Capper G, Davies DL et al (2005) Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. Inorg Chem 44:6497–6504CrossRefGoogle Scholar
  154. 154.
    Tsuda T, Boyd L, Hussey CL (2006) Uranium halide complexes in ionic liquids: an electrochemical and structural study. J Chem Soc Dalton Trans 2006:2334–2341Google Scholar
  155. 155.
    Shivagan DD, Dale PJ, Samantilleke AP et al (2007) Electrodeposition of chalcopyrite films from ionic liquid electrolytes. Thin Solid Films 515:5899–5905CrossRefGoogle Scholar
  156. 156.
    Dale PJ, Samantilleke AP, Shivagan DD (2007) Synthesis of cadmium and zinc semiconductor compounds from an ionic liquid containing choline chloride and urea. Thin Solid Films 515:5751–5760CrossRefGoogle Scholar
  157. 157.
    Carlin RT, Wilkes JS (2000) Chemistry and speciation in room temperature chloroaluminate molten salts. In: Mamantov G, Popoved AI (eds) The chemistry of nonaqueous solutions. Verlag Chemie, Aufl Weinheim/BergstGoogle Scholar
  158. 158.
    Zhao YG, Vandernoot TJ (1997) Electrodeposition of aluminium from room temperature AlCl3-TMPAC molten salts. Electrochim Acta 42:1639–1643CrossRefGoogle Scholar
  159. 159.
    Liao Q, Pitner WR (1997) Electrodeposition of aluminum from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt with benzene. J Electrochem Soc 144:936–942CrossRefGoogle Scholar
  160. 160.
    Wu B, Reddy RG, Rodgers RD (2001) Aluminum reduction via near room temperature electrolysis in ionic liquids. Light Met 1:237–243Google Scholar
  161. 161.
    Zhang M, Kamavaram V, Reddy RG (2003) New electrolytes for aluminum production: ionic liquids. JOM J Miner Met Mater Soc 55:54–57Google Scholar
  162. 162.
    Zhang M, Kamavaram V, Reddy RG (2004) Aluminum electrowinning in ionic liquids at room temperature. JOM J Miner Met Mater Soc 56:334–339Google Scholar
  163. 163.
    Kamavaram V, Reddy RG (2003) Physical and thermal properties of ionic liquids used in aluminum electrorefining at low temperatures. In: Das SK (ed), Aluminum, TMS, San DiegoGoogle Scholar
  164. 164.
    Zhang M, Reddy RG (2006) Electrical field and current density distribution modeling of aluminum. ECS Trans 1:47–60CrossRefGoogle Scholar
  165. 165.
    Jiang T, Chollier MJ, Brym B (2006) Electrodeposition of aluminium from ionic liquids: part II – studies on the electrodeposition of aluminum from aluminum chloride (AlCl3) trimethylphenylammonium chloride (TMPAC) ionic liquids. Surf Coat Technol 201:10–18CrossRefGoogle Scholar
  166. 166.
    Jiang T, Chollier MJ, Brym B (2006) Electrodeposition of aluminum from ionic liquids: part i – electrodeposition and surface morphology of aluminum from aluminium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol 201:1–9CrossRefGoogle Scholar
  167. 167.
    Liu QX, Abedin SZE, Endres F (2006) Electroplating of mild steel by aluminum in a first generation ionic liquid: a green alternative to commercial Al-plating in organic solvents. Surf Coat Technol 201:1352–1356CrossRefGoogle Scholar
  168. 168.
    Abedin SZE, Moustafa EM, Hempelmann R et al (2006) Electrodeposition of nano and microcrystalline aluminum in three different air and water stable ionic liquids. Chem Phys Chem 7:1535–1543CrossRefGoogle Scholar
  169. 169.
    Abedin SZE, Polleth M, Meiss SA et al (2007) Ionic liquids as green electrolytes for the electrodeposition of nanomaterials. Green Chem 9:549–553CrossRefGoogle Scholar
  170. 170.
    Moustafa EM, Abedin SZE, Shkurankov A et al (2007) Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium bis(trifluroro-methylsulfonyl)amide and 1-ethyl-3-methyl imidazolium bis(trifluroro methylsulfonyl)amide ionic liquids: in situ STM and EQCM studies. J Phys Chem B 111:4693–4703CrossRefGoogle Scholar
  171. 171.
    Vaughan J, Tu J, Dreisinger D (2006) Ionic liquid electrodeposition of reactive metals. In: Kongoli F, Reddy RG (eds) Advanced processing of metals and materials. TMS, The Minerals, Metals and Materials Society, WarrendaleGoogle Scholar
  172. 172.
    Vaughan J, Dreisinger D (2008) Electrodeposition of aluminum from aluminum chloride-trihexyl(tetradecyl) phosphonium chloride. J Electrochem Soc 155:D68–D72CrossRefGoogle Scholar
  173. 173.
    Gao LX, Wang LN, Qi T et al (2008) Electrodeposition of aluminium from AlCl3/Et3NHCl ionic liquids. Acta Phys Chim Sin 24:939–944CrossRefGoogle Scholar
  174. 174.
    Wang XR (2006) Electrorefining of aluminum with BMIC-AlCl3 ionic liquids. Master Thesis, Kunming University of Science and Technology, Kunming (in Chinese)Google Scholar
  175. 175.
    Zhao QN (2007) Electrorefining of aluminum with BMIC-AlCl3-R ionic liquids. Master Thesis, Kunming University of Science and Techology, Kunming (in Chinese)Google Scholar
  176. 176.
    Wang P, Nuli Y, Yang J, Feng Z (2006) Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium. Surf Coat Technol 201:3783–3787CrossRefGoogle Scholar
  177. 177.
    Nuli Y, Yang J, Wang P (2006) Electrodeposition of magnesium film from bmimbf4 ionic liquids. Appl Surf Sci 252:8086–8090CrossRefGoogle Scholar
  178. 178.
    Feng ZZ, Nuli Y, Wang JL et al (2006) Study of key factors influencing electrochemical reversibility of magnesium deposition and dissolution. J Electrochem Soc 153:C689–C693CrossRefGoogle Scholar
  179. 179.
    Cheek GT, O’Grady WE, Abedin SZE et al (2008) Studies on the electrodeposition of magnesium in ionic liquids. J Electrochem Soc 155:D91–D95CrossRefGoogle Scholar
  180. 180.
    Carlin RT, Osteryoung RA, Wilkes JS et al (1990) Studies of titanium(iv) chloride in a strongly Lewis acidic molten salt: electrochemistry and titanium NMR and electronic spectroscopy. Inorg Chem 29:3003–3006CrossRefGoogle Scholar
  181. 181.
    Mukhopadhyay I, Freyland W (2003) Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature. Langmuir 19(6):1951–1953CrossRefGoogle Scholar
  182. 182.
    Kayayana Y, Ogawa K, Miura T (2005) Electrochemical reduction of titanium tetrabromide in a hydrophobic room temperature molten salt. Electrochemistry 73(8):556–578Google Scholar
  183. 183.
    Andriyko Y, Nauer GE (2007) Electrochemistry of TICl4 in 1-butyl-2,3-dimethylimidazolium azide. Electrochim Acta 53:957–962CrossRefGoogle Scholar
  184. 184.
    Dai S, Ju YH, Bbarnes CE (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J Chem Soc Dalton Trans 8:1201–1202CrossRefGoogle Scholar
  185. 185.
    Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741CrossRefGoogle Scholar
  186. 186.
    Luo H, Dai S, Bonnesen PV (2004) Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tertoctylbenzo-crown-6) in ionic liquids. Anal Chem 76:3078–3083CrossRefGoogle Scholar
  187. 187.
    Wei GT, Yang Z, Chen CJ (2003) Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal Chim Acta 488:183–192CrossRefGoogle Scholar
  188. 188.
    Visser AE, Rogers RD (2003) Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J Solid State Chem 171:109–113CrossRefGoogle Scholar
  189. 189.
    Kozonoi N, Ikeda Y (2007) Extraction mechanism of metal ion from aqueous solution to the hydrophobic ionic liquid, 1-butyl-3-methylimidazolium nonafluorobutanesulfonate. Monatsh Chem 138:1145–1151CrossRefGoogle Scholar
  190. 190.
    Zhao H, Xia SQ, Ma PS (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80:1089–1096CrossRefGoogle Scholar
  191. 191.
    Visser A, Swatlowski RP, Reichert RM (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun 2001:135–136CrossRefGoogle Scholar
  192. 192.
    Visser A, Swatlowski RP, Rogers RD (2002) Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol 36:2523–2529CrossRefGoogle Scholar
  193. 193.
    Bartsch RA, Chun S, Dzyuba SV (2002) Ionic liquids as novel diluents for solvent extraction of metal salts by crown ethers. In: Rogers RD, Seddon KR (eds) Ionic liquids industrial applications for green chemistry. American Chemical Society, Washington, DCGoogle Scholar
  194. 194.
    Visser AE, Swatloski RP, Reichert WM et al (2000) Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room temperature ionic liquids. Ind Eng Chem Res 39:3596–3604CrossRefGoogle Scholar
  195. 195.
    Luo H, Dai S, Bonnesen PV (2004) Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Anal Chem 76:2773–2779CrossRefGoogle Scholar
  196. 196.
    Chen PY (2007) The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition. Electrochim Acta 52:5484–5492CrossRefGoogle Scholar
  197. 197.
    Visser AE, Swatloski RP, Griffin ST (2001) Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep Sci Technol 36:785–804CrossRefGoogle Scholar
  198. 198.
    Shimojo K, Goto M (2004) Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Anal Chem 76:5039–5044CrossRefGoogle Scholar
  199. 199.
    Vidal S, Neiva Correia MJ, Marques MM (2004) Studies on the use of ionic liquids as potential extractants of phenolic compounds and metal ions. Sep Sci Technol 39:2155–2169CrossRefGoogle Scholar
  200. 200.
    Nakashima K, Kubota F, Maruyama T (2003) Ionic liquids as a novel solvent for lanthanide extraction. Anal Sci 19:1097–1098CrossRefGoogle Scholar
  201. 201.
    Baston GMN, Bradley AE, Gorman T (2002) Ionic liquids for the nuclear industry: a radiochemical, structural, and electrochemical investigation. In: Rogers RD, Seddon KR (eds) Ionic liquids industrial applications for green chemistry. American Chemical Society, Washington, DCGoogle Scholar
  202. 202.
    Papaiconomou N, Lee JM, Salminen J (2008) Selective extraction of copper, mercury, silver, and palladium ions from water using hydrophobic ionic liquids. Ind Eng Chem Res 47:5080–5086CrossRefGoogle Scholar
  203. 203.
    Jitendra R, Harjani A, Singer RD (2008) Removal of metal ions from aqueous solutions using chelating task-specific ionic liquids. Dalton Trans 2008:4595–4601Google Scholar
  204. 204.
    Sun XQ, Wu DB, Chen J et al (2007) Separation of scandium(iii) from lanthanides(iii) with room temperature ionic liquid based extraction containing cyanex 925. J Chem Technol Biotechnol 82:267–272CrossRefGoogle Scholar
  205. 205.
    Sun XQ, Peng B, Ji Y et al (2008) The solid–liquid extraction of yttrium from rare earths by solvent (ionic liquid) impreganated resin coupled with complexing method. Sep Purif Technol 63:61–68CrossRefGoogle Scholar
  206. 206.
    Peng B, Sun XQ, Chen J (2007) Extraction of yttrium (III) into [C8mim]PF6 containing cyanex 923. J Rare Earth 25:153–156Google Scholar
  207. 207.
    Sun XQ, Peng B, Ji Y et al (2008) An effective method for enhancing metal-ions selectivity of ionic liquid-based extraction system: adding water-soluble complexing agent. Talanta 74(4):1071–1074CrossRefGoogle Scholar
  208. 208.
    Zuo Y, Chen J, Li DQ (2008) Extraction and separation of thorium (iv) from lanthanides (iii) with room temperature ionic liquids containing primary amine N1923. International solvent and extraction conference, TusconGoogle Scholar
  209. 209.
    Zuo Y, Chen J, Li DQ (2008) Reversed micellar solubilization extraction and separation of thorium (IV) from rare earth (iii) by primary amine N1923 in ionic liquid. Sep Purif Technol 63:684–690CrossRefGoogle Scholar
  210. 210.
    Sun XQ, Peng B, Ji Y et al (2007) Application of RTIL-based system cyanex923(925)/[Csmim][PF6]and Tbp/[A336]NO3 in scandium(iii) extraction. J Chinese Rare Earth Soc 25(4):417–421 (In Chinese)Google Scholar
  211. 211.
    Chen J, Li D-Q (2008) Application of ionic liquids on the rare earth separation. Acta Chem Process (Z1):54–59 (in Chinese)Google Scholar
  212. 212.
    Liu YH, Sun XQ, Luo F et al (2007) Ionic liquids and cyanex 923-doped organic–inorganic hybrid materials for Y(III) and lanthanides (III) separation. Chinese J Rare Met 31:395–398Google Scholar
  213. 213.
    Sun XQ, Peng B, Ji Y et al (2008) Ionic liquids based “all-in-one” synthesis and photoluminescence properties of lanthanide fluorides. J Phys Chem C 112:10083–10088CrossRefGoogle Scholar
  214. 214.
    Zuo Y, Liu YH, Chen J et al (2009) Extraction and recovery of cerium(iv) along with fluorine(i) from bastnasite leaching liquor by DEHEHP in [C8mim]PF6. J Chem Technol Biotechnol 84:949–956CrossRefGoogle Scholar
  215. 215.
    Zuo Y, Liu YH, Chen J et al (2008) The separation of cerium(iv) from nitric acid solutions containing thorium(iv) and lanthanides(iii) using pure [C8mim]PF6 as extracting phase. Ind Eng Chem Res 47:2349–2355CrossRefGoogle Scholar
  216. 216.
    Zhang M, Kamavaram V, Reddy RG (2004) Application of fluorinated ionic liquids in the extraction of aluminum. Light Met 2004:315–319Google Scholar
  217. 217.
    Wu B, Reddy RG, Rogers RD (2008) Production, refining and recycling of light weight and reactive metals in ionic liquids. US 6881321Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Kunming University of Science and TechnologyYunnan ProvinceChina

Personalised recommendations