Ionic Liquid Crystals

  • Valerio Causin
  • Giacomo Saielli


Ionic liquid crystals (ILCs) are emerging as interesting materials since they are expected to combine together the technological properties of ionic liquids (ILs) and liquid crystals (LCs). In this chapter, we will present a survey of the literature of the last 5 years, from 2005 to mid-2010 concerning ILCs. The chapter is divided into four sections: ILCs based on organic cations (and anions), metal-based ILCs and polymeric ILCs, and applications of ILCs.


Liquid Crystal Alkyl Chain Smectic Phase Propylene Imine Mesogenic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the MIUR (PRIN 20085M27SS) and Fondazione CARIPARO (Nano-Mode—Progetti di Eccellenza 2010) for financial support.


  1. 1.
    Goodby J, Saez I, Cowling S et al (2008) Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed 47:2754–2787Google Scholar
  2. 2.
    Greaves TL, Drummond CJ (2008) Ionic liquids as amphiphile self-assembly media. Chem Soc Rev 37:1709–1726Google Scholar
  3. 3.
    Kondrat S, Bier M, Harnau L (2010) Phase behavior of ionic liquid crystals. J Chem Phys 132:184901Google Scholar
  4. 4.
    Binnemans K (2005) Ionic liquid crystals. Chem Rev 105:4148–4204Google Scholar
  5. 5.
    Baudoux J, Judeinstein P, Cahard D et al (2005) Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality. Tetrahedron Lett 46:1137–1140Google Scholar
  6. 6.
    Goossens K, Nockemann P, Driesen K et al (2008) Imidazolium ionic liquid crystals with pendant mesogenic groups. Chem Mater 20:157–168Google Scholar
  7. 7.
    Li W, Zhang J, Li B et al (2009) Branched quaternary ammonium amphiphiles: nematic ionic liquid crystals near room temperature. Chem Commun 35:5269–5271Google Scholar
  8. 8.
    Kohmoto S, Hara Y, Kishikawa K (2010) Hydrogen-bonded ionic liquid crystals: pyridinylmethylimidazolium as a versatile building block. Tetrahedron Lett 51:1508–1511Google Scholar
  9. 9.
    Causin V, Saielli G (2009) Effect of asymmetric substitution on the mesomorphic behaviour of low-melting viologen salts of bis(trifluoromethanesulfonyl)amide. J Mater Chem 19:9153–9162Google Scholar
  10. 10.
    Dobbs W, Douce L, Heinrich B (2009) 1-(4-alkyloxybenzyl)-3-methyl-1H-imidazol-3-ium organic backbone: a versatile smectogenic moiety. Beilstein J Org Chem 5(1):51Google Scholar
  11. 11.
    Wang X, Heinemann FW, Yang M et al (2009) A new class of double alkyl-substituted, liquid crystalline imidazolium ionic liquids—a unique combination of structural features, viscosity effects, and thermal properties. Chem Commun 47:7405–7407Google Scholar
  12. 12.
    Getsis A, Mudring A (2009) Structural and thermal behaviour of the pyrrolidinium based ionic liquid crystals [C10mpyr]Br and [C12mpyr]Br. Z Anorg Allg Chem 635:2214–2221Google Scholar
  13. 13.
    Kohnen G, Tosoni M, Tussetschlaeger S et al (2009) Counterion effects on the mesomorphic properties of chiral imidazolium and pyridinium ionic liquids. Eur J Org Chem 32:5601–5609Google Scholar
  14. 14.
    Li X, Bruce DW, Shreeve JM (2009) Dicationic imidazolium-based ionic liquids and ionic liquid crystals with variously positioned fluoro substituents. J Mater Chem 19:8232–8238Google Scholar
  15. 15.
    Fouchet J, Douce L, Heinrich B et al (2009) A convenient method for preparing rigid-core ionic liquid crystals. Beilstein J Org Chem 5:51Google Scholar
  16. 16.
    Yu W, Peng H, Zhang H et al (2009) Synthesis and mesophase behaviour of morpholinium ionic liquid crystals. Chin J Chem 27:1471–1475Google Scholar
  17. 17.
    Lava K, Binnemans K, Cardinaels T (2009) Piperidinium, piperazinium and morpholinium ionic liquid crystals. J Phys Chem B 113:9506–9511Google Scholar
  18. 18.
    Ringstrand B, Monobe H, Kaszynski P (2009) Anion-driven mesogenicity: ionic liquid crystals based on the [closo-1-CB9H10]-cluster. J Mater Chem 19:4805–4812Google Scholar
  19. 19.
    Blesic M, Swadzba-Kwasny M, Holbrey JD et al (2009) New catanionic surfactants based on 1-alkyl-3-methylimidazolium alkylsulfonates, [CnH2n  +  1mim][CmH2m  +  1SO3]: mesomorphism and aggregation. Phys Chem Chem Phys 11:4260–4268Google Scholar
  20. 20.
    Goossens K, Lava K, Nockemann P et al (2009) Pyrrolidinium ionic liquid crystals with pendant mesogenic groups. Langmuir 25:5881–5897Google Scholar
  21. 21.
    Ma K, Lee K, Minkova L et al (2009) Design criteria for ionic liquid crystalline phases of phosphonium salts with three equivalent long n-alkyl chains. J Org Chem 74:2088–2098Google Scholar
  22. 22.
    Getsis A, Mudring A (2008) Imidazolium based ionic liquid crystals: structure, photophysical and thermal behavior of [Cnmim]Br.xH2O (n  =  12, 14; x  =  0, 1). Cryst Res Technol 43:1187–1196Google Scholar
  23. 23.
    Ma K, Shahkhatuni AA, Somashekhar BS et al (2008) Room-temperature and low-ordered, amphotropic-lyotropic ionic liquid crystal phases induced by alcohols in phosphonium halides. Langmuir 24:9843–9854Google Scholar
  24. 24.
    Zhang Q, Jiao L, Shan C et al (2008) Synthesis and characterization of novel imidazolium-based ionic liquid crystals with a p-nitroazobenzene moiety. Liq Cryst 35:765–772Google Scholar
  25. 25.
    Trilla M, Pleixats R, Parella T et al (2008) Ionic liquid crystals based on mesitylene-containing bis- and trisimidazolium salts. Langmuir 24:259–265Google Scholar
  26. 26.
    Kouwer PHJ, Swager TM (2007) Synthesis and mesomorphic properties of rigid-core ionic liquid crystals. J Am Chem Soc 129:14042–14052Google Scholar
  27. 27.
    Ster D, Baumeister U, Chao JL et al (2007) Synthesis and mesophase behaviour of ionic liquid crystals. J Mater Chem 17:3393–3400Google Scholar
  28. 28.
    Sallenave X, Bazuin CG (2007) Interplay of ionic, hydrogen-bonding, and polar interactions in liquid crystalline complexes of a pyridylpyridinium polyamphiphile with (azo)phenol-functionalized molecules. Macromolecules 40:5326–5336Google Scholar
  29. 29.
    Yang J, Zhang Q, Zhu L et al (2007) Novel ionic liquid crystals based on N-alkylcaprolactam as cations. Chem Mater 19:2544–2550Google Scholar
  30. 30.
    Lo Celso F, Pibiri I, Triolo A et al (2007) Study on the thermotropic properties of highly fluorinated 1,2,4-oxadiazolylpyridinium salts and their perspective applications as ionic liquid crystals. J Mater Chem 17:1201–1208Google Scholar
  31. 31.
    Pal SK, Kumar S (2006) Microwave-assisted synthesis of novel imidazolium-based ionic liquid crystalline dimers. Tetrahedron Lett 47:8993–8997Google Scholar
  32. 32.
    Chiou JYZ, Chen JN, Lei JS et al (2006) Ionic liquid crystals of imidazolium salts with a pendant hydroxyl group. J Mater Chem 16:2972–2977Google Scholar
  33. 33.
    Dobbs W, Douce L, Allouche L et al (2006) New ionic liquid crystals based on imidazolium salts. New J Chem 30:528–532Google Scholar
  34. 34.
    Meng F, Cheng C, Zhang B et al (2005) Synthesis and characterization of a novel liquid crystal-bearing ionic mesogen. Liq Cryst 32:191–195Google Scholar
  35. 35.
    Zakrevskyy Y, Smarsly B, Stumpe J et al (2005) Highly ordered monodomain ionic self-assembled liquid-crystalline materials. Phys Rev E 71:1–12, 021701Google Scholar
  36. 36.
    Li L, Groenewold J, Picken SJ (2005) Transient phase-induced nucleation in ionic liquid crystals and size-frustrated thickening. Chem Mater 17:250–257Google Scholar
  37. 37.
    Wiggins KM, Kerr RL, Chen Z et al (2010) Design, synthesis, and study of benzobis- and bibenz(imidazolium)-based ionic liquid crystals. J Mater Chem 20:5709–5714Google Scholar
  38. 38.
    Sauer S, Steinke N, Baro A et al (2008) Guanidinium chlorides with triphenylene moieties displaying columnar mesophases. Chem Mater 20:1909–1915Google Scholar
  39. 39.
    Olivier J, Camerel F, Barbera J et al (2009) Ionic liquid crystals formed by self-assembly around an anionic anthracene core. Chem Eur J 15:8163–8174Google Scholar
  40. 40.
    Alam MA, Motoyanagi J, Yamamoto Y et al (2009) “Bicontinuous Cubic” liquid crystalline materials from discotic molecules: a special effect of paraffinic side chains with ionic liquid pendants. J Am Chem Soc 131:17722–17723Google Scholar
  41. 41.
    Tanabe K, Yasuda T, Kato T (2008) Luminescent ionic liquid crystals based on tripodal pyridinium salts. Chem Lett 37:1208–1209Google Scholar
  42. 42.
    Noguchi T, Kishikawa K, Kohmoto S (2008) Tailoring of ionic supramolecular assemblies based on ammonium carboxylates toward liquid-crystalline micellar cubic mesophases. Liq Cryst 35:1043–1050Google Scholar
  43. 43.
    Noguchi T, Kishikawa K, Kohmoto S (2008) Volume effect of alkyl chains on organization of ionic self-assemblies toward hexagonal columnar mesophases. Bull Chem Soc Jpn 81:778–783Google Scholar
  44. 44.
    Yazaki S, Kamikawa Y, Yoshio M et al (2008) Ionic liquid crystals: self-assembly of imidazolium salts containing an L-glutamic acid moiety. Chem Lett 37:538–539Google Scholar
  45. 45.
    Noguchi T, Kishikawa K, Kohmoto S (2008) Tailoring liquid-crystalline supramolecular structures by ionic interactions. Chem Lett 37:12–13Google Scholar
  46. 46.
    Yoshio M, Ichikawa T, Shimura H et al (2007) Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivities. Bull Chem Soc Jpn 80:1836–1841Google Scholar
  47. 47.
    Tanabe K, Yasuda T, Yoshio M et al (2007) Viologen-based redox-active ionic liquid crystals forming columnar phases. Org Lett 9:4271–4274Google Scholar
  48. 48.
    Nayak A, Suresh KA, Pal SK et al (2007) Films of novel mesogenic molecules at air-water and air-solid interfaces. J Phys Chem B 111:11157–11161Google Scholar
  49. 49.
    Ichikawa T, Yoshio M, Hamasaki A et al (2007) Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J Am Chem Soc 129:10662–10663Google Scholar
  50. 50.
    Kumar S, Pal SK (2005) Ionic discotic liquid crystals: synthesis and characterization of pyridinium bromides containing a triphenylene core. Tetrahedron Lett 46:4127–4130Google Scholar
  51. 51.
    Motoyanagi J, Fukushima T, Aida T (2005) Discotic liquid crystals stabilized by interionic interactions: imidazolium ion-anchored paraffinic triphenylene. Chem Commun (Cambridge) 1:101–103Google Scholar
  52. 52.
    Sauer S, Saliba S, Tussetschlager S et al (2009) p-Alkoxybiphenyls with guanidinium head groups displaying smectic mesophases. Liq Cryst 36:275–299Google Scholar
  53. 53.
    Goossens K, Lava K, Nockemann P et al (2009) Pyrrolidinium ionic liquid crystals. Chem Eur J 15:656–674Google Scholar
  54. 54.
    Bhowmik PK, Han HS, Cebe JJ et al (2003) Ambient temperature thermotropic liquid crystalline viologen bis(triflimide) salts. Liq Cryst 30:1433–1440Google Scholar
  55. 55.
    Bhowmik PK, Han HS, Nedeltchev IK et al (2004) Room-temperature thermotropic ionic liquid crystals: viologenbis(triflimide) salts. Mol Cryst Liq Cryst 419:27–46Google Scholar
  56. 56.
    Causin V, Saielli G (2009) Effect of a structural modification of the bipyridinium core on the phase behaviour of viologen-based bistriflimide salts. J Mol Liq 145:41–47Google Scholar
  57. 57.
    Tanabe K, Kato T (2009) Self-assembly of cyclobis(paraquat-p-phenylene)s. Chem Commun 14:1864–1866Google Scholar
  58. 58.
    Yasuda T, Tanabe K, Tsuji T et al (2010) A redox-switchable 2 rotaxane in a liquid-crystalline state. Chem Commun 46:1224–1226Google Scholar
  59. 59.
    Binnemans K, Gorller-Walrand C (2002) Lanthanide-containing liquid crystals and surfactants. Chem Rev 102:2303–2345Google Scholar
  60. 60.
    Donnio B (2002) Lyotropic metallomesogens. Curr Opinion Colloid Interface Sci 7:371–394Google Scholar
  61. 61.
    Gharbia M, Gharbi A, Nguyen HT et al (2002) Polycatenar liquid crystals with long rigid aromatic cores: a review of recent works. Curr Opinion Colloid Interface Sci 7:312–325Google Scholar
  62. 62.
    Serrano JL, Sierra T (2003) Helical supramolecular organizations from metal-organic liquid crystals. Coord Chem Rev 242:73–85Google Scholar
  63. 63.
    Lin IJB, Vasam CS (2005) Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J Organomet Chem 690:3498–3512Google Scholar
  64. 64.
    Garbovskiy Y, Koval’chuk A, Grydyakina A et al (2007) Electrical conductivity of lyotropic and thermotropic ionic liquid crystals consisting of metal alkanoates. Liq Cryst 34:599–603Google Scholar
  65. 65.
    Klimusheva GV, Garbovskii Y, Bugaichuk S et al (2009) Novel nanocomposite materials based on mesomorphic glasses of metal alkanoates: structure and nonlinear optical properties. High Energ Chem 43:532–535Google Scholar
  66. 66.
    Bugaychuk S, Klimusheva G, Garbovskiy Y et al (2006) Nonlinear optical properties of composites based on conductive metal-alkanoate liquid crystals. Opto-Electron Rev 14:275–279Google Scholar
  67. 67.
    MdC L, Baena MJ, Espinet P (2008) Ionic metallomesogens derived from silver(I) bis-amine complexes: structure and mesogenic behavior. Inorg Chim Acta 361:2270–2278Google Scholar
  68. 68.
    Crispini A, Ghedini M, Pucci D (2009) Functional properties of metallomesogens modulated by molecular and supramolecular exotic arrangements. Beilstein J Org Chem 5:54Google Scholar
  69. 69.
    Pucci D, Barberio G, Bellusci A et al (2005) Supramolecular columnar mesomorphism induced by silver(I) coordination of 2,2′-bipyridine-4,4′-diamides. Mol Cryst Liq Cryst 441:251–260Google Scholar
  70. 70.
    Pucci D, Barberio G, Bellusci A et al (2006) Tailoring “non conventional” ionic metallomesogens around an ortho-palladated fragment. J Organomet Chem 691:1138–1142Google Scholar
  71. 71.
    Kadkin ON, Kim EH, Kim SY et al (2009) Synthesis and liquid crystal properties of copper(II) and palladium(II) chelates with new ferrocene-containing enaminoketones. Polyhedron 28:1301–1307Google Scholar
  72. 72.
    Lapaev DV, Nikiforov VG, Knyazev AA et al (2008) Intramolecular energy transfer in mesogenic europium(III) adduct. Opt Spectrosc 104:851–857Google Scholar
  73. 73.
    Lapaev DV, Nikiforov VG, Safiullin GM et al (2009) Interligand energy transfer in europium(III) mesogenic adducts. J Struct Chem 50:775–781Google Scholar
  74. 74.
    Kumari S, Singh AK, Rao TR (2009) Mesogenic lanthanoid metal complexes of a non-mesogenic Schiff-base, N, N′-di-(4-hexadecyloxysalicylidene)-1′,8′-diamino-3′,6′-dioxaoctane. Mater Sci Eng C 29:2454–2458Google Scholar
  75. 75.
    Kumari S, Singh AK, Ravi Kumar K et al (2009) Crystal structure and ligational aspects of the mesogenic Schiff base, N, N′-di(4-hexadecyloxysalicylidene)diaminoethane, with some rare earth metal ions. Inorg Chim Acta 362:4205–4211Google Scholar
  76. 76.
    Suarez S, Mamula O, Scopelliti R et al (2005) Lanthanide luminescent mesomorphic complexes with macrocycles derived from diaza-18-crown-6. New J Chem 29:1323–1334Google Scholar
  77. 77.
    Getsis A, Balke B, Felser C et al (2009) Dysprosium-based ionic liquid crystals: thermal, structural, photo- and magnetophysical properties. Cryst Growth Des 9:4429–4437Google Scholar
  78. 78.
    Kocher J, Gumy F, Chauvin A et al (2007) Exploring the potential of europium(III) luminescence for the detection of phase transitions in ionic liquid crystals. J Mater Chem 17:654–657Google Scholar
  79. 79.
    Puntus LN, Schenk KJ, Bunzli JG (2005) Intense near-infrared luminescence of a mesomorphic ionic liquid doped with lanthanide β-diketonate ternary complexes. Eur J Inorg Chem 23:4739–4744Google Scholar
  80. 80.
    Taubert A (2004) CuCl nanoplatelets from an ionic liquid-crystal precursor. Angew Chem Int Ed 43:5380–5382Google Scholar
  81. 81.
    Taubert A, Steiner P, Mantion A (2005) Ionic liquid crystal precursors for inorganic particles: phase diagram and thermal properties of a CuCl nanoplatelet precursor. J Phys Chem B 109:15542–15547Google Scholar
  82. 82.
    Wang XJ, Zhou QF (2006) Liquid cystalline polymers. World Scientific, SingaporeGoogle Scholar
  83. 83.
    Xue Y, Hara M, Yoon HN (1998) Ionic naphthalene thermotropic copolyesters: divalent salts and tensile mechanical properties. Macromolecules 31:7806–7813Google Scholar
  84. 84.
    Han HS, Bhowmik PK (1995) Liquid-crystalline main-chain ionene polymers. Trends Polym Sci 3:199–206Google Scholar
  85. 85.
    Bhowmik PK, Akhter S, Han H (1995) Thermotropic liquid-crystalline main-chain viologen polymers. J Polym Sci A Polym Chem 33:1927–1933Google Scholar
  86. 86.
    Bhowmik PK, Han HS (1995) Lyotropic liquid-crystalline main-chain viologen polymers. J Polym Sci Polym Chem 33:1745–1749Google Scholar
  87. 87.
    Bhowmik PK, Xu WH, Han HS (1994) Thermotropic liquid-crystalline main-chain viologen polymers—homopolymer of 4,4′-bipyridyl with ditosylate of trans-1,4-cyclohexanedimethanol and its copolymers with ditosylate of 1,8-octanediol. J Polym Sci A Polym Chem 32:3205–3209Google Scholar
  88. 88.
    Zhang BY, Weiss RA (1992) Liquid-crystalline ionomers.1. Main-chain liquid-crystalline polymer containing pendant sulfonate groups. J Polym Sci A Polym Chem 30:91–97Google Scholar
  89. 89.
    Zhang BY, Weiss RA (1992) Liquid-crystalline ionomers. 2. Main chain liquid-crystalline polymers with terminal sulfonate groups. J Polym Sci A Polym Chem 30:989–996Google Scholar
  90. 90.
    Meng F, Zhang B, Xu Y et al (2005) Main-chain liquid-crystalline ionomers bearing potassium sulfonate groups. J Appl Polym Sci 96:2021–2026Google Scholar
  91. 91.
    Tian M, Zhang B, Meng F et al (2006) Main-chain chiral smectic liquid-crystalline ionomers containing sulfonic acid groups. J Appl Polym Sci 99:1254–1263Google Scholar
  92. 92.
    Li Q, Meng F, Zhang B et al (2008) Mesomorphic phases of main-chain liquid-crystalline polymers with pendent sulfonic acid groups. J Appl Polym Sci 110:791–797Google Scholar
  93. 93.
    Yoshio M, Kagata T, Hoshino K et al (2006) One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J Am Chem Soc 128:5570–5577Google Scholar
  94. 94.
    Jazkewitsch O, Ritter H (2009) Polymerizable ionic liquid crystals. Macromol Rapid Commun 30:1554–1558Google Scholar
  95. 95.
    Zhang Q, Bazuin CG (2009) Liquid crystallinity and other properties in complexes of cationic azo-containing surfactomesogens with poly(styrenesulfonate). Macromolecules 42:4775–4786Google Scholar
  96. 96.
    Yoshimi T, Ujiie S (2006) Self-assembly and liquid crystalline properties of ionic polymers and their nonionic family. Macromol Symp 242:290–294Google Scholar
  97. 97.
    Zhang X, Wang C, Pan X et al (2009) Nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid-crystalline polymer. Opt Commun 283:146–150Google Scholar
  98. 98.
    Xiao S, Lu X, Lu Q (2007) Photosensitive polymer from ionic self-assembly of azobenzene dye and poly(ionic liquid) and its alignment characteristic toward liquid crystal molecules. Macromolecules 40:7944–7950Google Scholar
  99. 99.
    Xiao S, Lu X, Lu Q et al (2008) Photosensitive liquid-crystalline supramolecules self-assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy. Macromolecules 41:3884–3892Google Scholar
  100. 100.
    Tan BH, Yoshio M, Ichikawa T et al (2006) Spiropyran-based liquid crystals: the formation of columnar phases via acid-induced spiro-merocyanine isomerisation. Chem Commun 45:4703–4705Google Scholar
  101. 101.
    Tan B, Yoshio M, Watanabe K et al (2008) Columnar liquid-crystalline assemblies composed of spiropyran derivatives and sulfonic acids. Polym Adv Technol 19:1362–1368Google Scholar
  102. 102.
    Zhang B, Sun Q, Tian M et al (2007) Synthesis and mesomorphic properties of side-chain liquid crystalline ionomers containing sulfonic acid groups. J Appl Polym Sci 104:304–309Google Scholar
  103. 103.
    Zhang B, Meng F, Tian M et al (2006) Side-chain liquid-crystalline polysiloxanes containing ionic mesogens and cholesterol ester groups. React Funct Polym 66:551–558Google Scholar
  104. 104.
    Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A Polym Chem 40:2719–2728Google Scholar
  105. 105.
    Cook AG, Baumeister U, Tschierske C (2005) Supramolecular dendrimers: unusual mesophases of ionic liquid crystals derived from protonation of DAB dendrimers with facial amphiphilic carboxylic acids. J Mater Chem 15:1708–1721Google Scholar
  106. 106.
    Marcos M, Martin-Rapun R, Omenat A et al (2006) Ionic liquid crystal dendrimers with mono-, di- and trisubstituted benzoic acids. Chem Mater 18:1206–1212Google Scholar
  107. 107.
    Ujiie S, Osaka M, Yano Y et al (2000) Ionic liquid crystalline systems with branched or hyperbranched polymers. Kobunshi Ronbunshu 57:797–802Google Scholar
  108. 108.
    Tsiourvas D, Felekis T, Sideratou Z et al (2004) Ionic liquid crystals derived from the protonation of poly(propylene imine) dendrimers with a cholesterol-based carboxylic acid. Liq Cryst 31:739–744Google Scholar
  109. 109.
    Martin-Rapun R, Marcos M, Omenat A et al (2005) Ionic thermotropic liquid crystal dendrimers. J Am Chem Soc 127:7397–7403Google Scholar
  110. 110.
    Marcos M, Alcala R, Barbera J et al (2008) Photosensitive ionic nematic liquid crystalline complexes based on dendrimers and hyperbranched polymers and a cyanoazobenzene carboxylic acid. Chem Mater 20:5209–5217Google Scholar
  111. 111.
    Stevelmans S, vanHest JCM, Jansen J et al (1996) Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles. J Am Chem Soc 118:7398–7399Google Scholar
  112. 112.
    Antharjanam PKS, Jaseer M, Ragi KN et al (2009) Intrinsic luminescence properties of ionic liquid crystals based on PAMAM and PPI dendrimers. J Photochem Photobiol A 203:50–55Google Scholar
  113. 113.
    Canilho N, Scholl M, Klok H et al (2007) Thermotropic ionic liquid crystals via self-assembly of cationic hyperbranched polypeptides and anionic surfactants. Macromolecules 40:8374–8383Google Scholar
  114. 114.
    Giner I, Gascon I, Gimenez R et al (2009) Supramolecular architecture in langmuir films of a luminescent ionic liquid crystal. J Phys Chem C 113:18827–18834Google Scholar
  115. 115.
    Wang Q, Wang X, Lou W et al (2009) Stable blue- and green-emitting zinc oxide from ionic liquid crystal precursors. Chemphyschem 10:3201–3203Google Scholar
  116. 116.
    Bielawski CW, Boydston AJ (2007) Design, synthesis, and application of benzobis(imidazolium) salts as a new class of photoluminescent ionic liquid crystals. Polym Prepr (Am Chem Soc Div Polym Chem) 48:772–773Google Scholar
  117. 117.
    Talarico M, Barberio G, Pucci D et al (2003) Undoped photorefractive ferroelectric liquid crystal. Adv Mater 15:1374–1377Google Scholar
  118. 118.
    Talarico M, Termine R, Barberio G et al (2004) Measurement of the photorefractive space-charge field in a ferroelectric mesogen. Appl Phys Lett 84:1034–1036Google Scholar
  119. 119.
    Pan X, Xiao S, Wang C et al (2009) Photoinduced anisotropy in an azo-containing ionic liquid-crystalline polymer. Opt Commun 282:763–768Google Scholar
  120. 120.
    Yamanaka N, Kawano R, Kubo W et al (2007) Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J Phys Chem B 111:4763–4769Google Scholar
  121. 121.
    Kawano R, Nazeeruddin MK, Sato A et al (2007) Amphiphilic ruthenium dye as an ideal sensitizer in conversion of light to electricity using ionic liquid crystal electrolyte. Electrochem Commun 9:1134–1138Google Scholar
  122. 122.
    Larionova J, Guari Y, Blanc C et al (2009) Toward organization of cyano-bridged coordination polymer nanoparticles within an ionic liquid crystal. Langmuir 25:1138–1147Google Scholar
  123. 123.
    Dobbs W, Suisse J, Douce L et al (2006) Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors. Angew Chem Int Ed 45:4179–4182Google Scholar
  124. 124.
    Haramoto Y (2009) Lubricants comprising pyridinium salt ionic liquid crystals, and lubricating greases containing same lubricants. Jpn Kokai Tokkyo Koho 2008–66037: 19Google Scholar
  125. 125.
    Noble RD, Gin DL, Koval C (2007) Ionic liquid materials for barrier applications. Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States, 19–23 August 2007 COLL-401Google Scholar
  126. 126.
    Gautam A, Patrick M (2007) Preparation of food bar using mesomorphic phase of edible surfactant in the cream or filling layer. US Pat Appl Publ 2005–320008: 10Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dipartimento di Scienze ChimicheUniversità di PadovaPadovaItaly
  2. 2.Istituto per la Tecnologia delle MembraneUnità di Padova, C.N.R. Consiglio Nationalle delle RicerchePadovaItaly

Personalised recommendations