Advertisement

Proteinase-Activated Receptors (PARs) and Calcium Signaling in Cancer

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 740)

Abstract

Proteinase activated receptors (PARs), a small subfamily of G protein-coupled receptors with four members, PAR1, PAR2, PAR3 and PAR4, are expressed in various tumours from epithelial origin and can play an important role in tumour progression and metastasis. Within the complex intracellular PAR signaling networks triggered by PARs, an elevation in intracellular free calcium ion concentrations represents a key second messenger system. In this review, we summarize current information about the mechanisms whereby PARs can signal via intracellular calcium in the setting of cancer and we discuss possibilities for using the PAR-[Ca2+]i signaling pathway as a target for the therapy of epithelial cancer.

Keywords

Proteinase activated receptors PARs Thrombin receptor PAR1 PAR2 PAR3 PAR4 Signal transduction Calcium signaling Intracellular free calcium ion Carcinogenesis Cancer progression 

Notes

Acknowledgements

Work in the author’s laboratories is supported by grants from German Cancer Aid (RK) and German Research Foundation (RK), the Canadian Institutes for Health Research (MDH) and the Heart & Stroke Foundation of Alberta and Nunavut (MDH). We are grateful for the referee’s comments which have helped with the writing of this article.

References

  1. 1.
    Ossovskaya V, Bunnett N (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621PubMedCrossRefGoogle Scholar
  2. 2.
    Ramachandran R, Hollenberg M (2008) Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 153(Suppl 1):S263–S282PubMedGoogle Scholar
  3. 3.
    Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger T, Hollenberg M (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26:1–43PubMedCrossRefGoogle Scholar
  4. 4.
    Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130(3):248–282PubMedCrossRefGoogle Scholar
  5. 5.
    Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204PubMedCrossRefGoogle Scholar
  6. 6.
    Hollenberg M, Compton S (2002) International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol Rev 54:203–217PubMedCrossRefGoogle Scholar
  7. 7.
    Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3:1800–1814PubMedCrossRefGoogle Scholar
  8. 8.
    Gandhi PS, Chen Z, Di Cera E (2010) Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1. J Biol Chem 285:15393–15398PubMedCrossRefGoogle Scholar
  9. 9.
    Vu T, Hung D, Wheaton V, Coughlin S (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068PubMedCrossRefGoogle Scholar
  10. 10.
    Scarborough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TK, Wheaton VI, Turck CW, Coughlin SR (1992) Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem 267:13146–13149PubMedGoogle Scholar
  11. 11.
    Hansen KK, Saifeddine M, Hollenberg MD (2004) Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology 112:183–190PubMedCrossRefGoogle Scholar
  12. 12.
    Kaufmann R, Schulze B, Krause G, Mayr LM, Settmacher U, Henklein P (2005) Proteinase-activated receptors (PARs)–the PAR3 Neo-N-terminal peptide TFRGAP interacts with PAR1. Regul Pept 125:61–66PubMedCrossRefGoogle Scholar
  13. 13.
    Rasmussen UB, Vouret-Craviari V, Jallat S, Schlesinger Y, Pagès G, Pavirani A, Lecocq JP, Pouysségur J, Van Obberghen-Schilling E (1991) cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett 288:123–128PubMedCrossRefGoogle Scholar
  14. 14.
    Ishihara H, Connolly A, Zeng D, Kahn M, Zheng Y, Timmons C, Tram T, Coughlin S (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506PubMedCrossRefGoogle Scholar
  15. 15.
    Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 95:6642–6646PubMedCrossRefGoogle Scholar
  16. 16.
    Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV, Tam C, Coughlin SR (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694PubMedCrossRefGoogle Scholar
  17. 17.
    Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275:6819–6823PubMedCrossRefGoogle Scholar
  18. 18.
    Schuepbach RA, Riewald M (2010) Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost 8:379–388PubMedCrossRefGoogle Scholar
  19. 19.
    Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303–313PubMedCrossRefGoogle Scholar
  20. 20.
    Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 91:9208–9212PubMedCrossRefGoogle Scholar
  21. 21.
    Grab D, Garcia-Garcia J, Nikolskaia O, Kim Y, Brown A, Pardo C, Zhang Y, Becker K, Wilson B, de Lima A, Scharfstein J, Dumler J (2009) Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis 3:e479PubMedCrossRefGoogle Scholar
  22. 22.
    McCoy KL, Traynelis SF, Hepler JR (2010) PAR1 and PAR2 couple to overlapping and distinct sets of G proteins and linked signaling pathways to differentially regulate cell physiology. Mol Pharmacol 77:1005–1015PubMedCrossRefGoogle Scholar
  23. 23.
    Sekiguchi F, Takaoka K, Kawabata A (2007) Proteinase-activated receptors in the gastrointestinal system: a functional linkage to prostanoids. Inflammopharmacology 15:246–251PubMedCrossRefGoogle Scholar
  24. 24.
    Macfarlane S, Plevin R (2003) Intracellular signalling by the G-protein coupled proteinase-activated receptor (PAR) family. Drug Dev Res 59:367–374CrossRefGoogle Scholar
  25. 25.
    Coelho A, Ossovskaya V, Bunnett N (2003) Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr Med Chem Cardiovasc Hematol Agents 1:61–72PubMedCrossRefGoogle Scholar
  26. 26.
    Kawabata A, Kawao N (2005) Physiology and pathophysiology of proteinase-activated receptors (PARs): PARs in the respiratory system: cellular signaling and physiological/pathological roles. J Pharmacol Sci 97:20–24PubMedCrossRefGoogle Scholar
  27. 27.
    Soh UJ, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160:191–203PubMedCrossRefGoogle Scholar
  28. 28.
    Hollenberg MD (2005) Physiology and pathophysiology of proteinase-activated receptors (PARs): proteinases as hormone-like signal messengers: PARs and more. J Pharmacol Sci 97:8–13PubMedCrossRefGoogle Scholar
  29. 29.
    Russo A, Soh UJ, Trejo J (2009) Proteases display biased agonism at protease-activated receptors: location matters! Mol Interv 9:87–96PubMedCrossRefGoogle Scholar
  30. 30.
    Chen CH, Paing MM, Trejo J (2004) Termination of protease-activated receptor-1 signaling by beta-arrestins is independent of receptor phosphorylation. J Biol Chem 279:10020–10031PubMedCrossRefGoogle Scholar
  31. 31.
    Ramachandran R, Mihara K, Mathur M, Rochdi MD, Bouvier M, Defea K, Hollenberg MD (2009) Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways. Mol Pharmacol 76:791–801PubMedCrossRefGoogle Scholar
  32. 32.
    Ge L, Shenoy SK, Lefkowitz RJ, DeFea K (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem 279:55419–55424PubMedCrossRefGoogle Scholar
  33. 33.
    Wang P, Jiang Y, Wang Y, Shyy JY, DeFea KA (2010) Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2. BMC Biochem 11:36PubMedCrossRefGoogle Scholar
  34. 34.
    Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282:20634–20646PubMedCrossRefGoogle Scholar
  35. 35.
    Defea K (2008) Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br J Pharmacol 153(Suppl 1):S298–S309PubMedGoogle Scholar
  36. 36.
    Weis WI, Kobilka BK (2008) Structural insights into G-protein-coupled receptor activation. Curr Opin Struct Biol 18:734–740PubMedCrossRefGoogle Scholar
  37. 37.
    Gether U, Kobilka BK (1998) G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem 273:17979–17982PubMedCrossRefGoogle Scholar
  38. 38.
    de Haën C (1976) The non-stoichiometric floating receptor model for hormone sensitive adenylyl cyclase. J Theor Biol 58:383–400PubMedCrossRefGoogle Scholar
  39. 39.
    Jacobs S, Cuatrecasas P (1976) The mobile receptor hypothesis and “cooperativity” of hormone binding. Application to insulin. Biochim Biophys Acta 433:482–495PubMedCrossRefGoogle Scholar
  40. 40.
    Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304PubMedCrossRefGoogle Scholar
  41. 41.
    Hung DT, Wong YH, Vu TK, Coughlin SR (1992) The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 267:20831–20834PubMedGoogle Scholar
  42. 42.
    Rahman A, True AL, Anwar KN, Ye RD, Voyno-Yasenetskaya TA, Malik AB (2002) Galpha(q) and Gbetagamma regulate PAR-1 signaling of thrombin-induced NF-kappaB activation and ICAM-1 transcription in endothelial cells. Circ Res 91:398–405PubMedCrossRefGoogle Scholar
  43. 43.
    ten Cate H, Falanga A (2008) Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb 36:122–130PubMedCrossRefGoogle Scholar
  44. 44.
    Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264PubMedCrossRefGoogle Scholar
  45. 45.
    Rao LV, Pendurthi UR (2005) Tissue factor-factor VIIa signaling. Arterioscler Thromb Vasc Biol 25:47–56PubMedGoogle Scholar
  46. 46.
    Belting M, Ahamed J, Ruf W (2005) Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 25:1545–1550PubMedCrossRefGoogle Scholar
  47. 47.
    Riewald M, Ruf W (2001) Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci USA 98:7742–7747PubMedCrossRefGoogle Scholar
  48. 48.
    Schaffner F, Ruf W (2009) Tissue factor and PAR2 signaling in the tumor microenvironment. Arterioscler Thromb Vasc Biol 29:1999–2004PubMedCrossRefGoogle Scholar
  49. 49.
    Borgoño CA, Diamandis EP (2004) The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 4:876–890PubMedCrossRefGoogle Scholar
  50. 50.
    Oikonomopoulou K, Diamandis EP, Hollenberg MD (2010) Kallikrein-related peptidases: proteolysis and signaling in cancer, the new frontier. Biol Chem 391:299–310PubMedCrossRefGoogle Scholar
  51. 51.
    Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, Scarisbrick I, Andrade-Gordon P, Cottrell GS, Bunnett NW, Diamandis EP, Hollenberg MD (2006) Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 281:32095–32112PubMedCrossRefGoogle Scholar
  52. 52.
    Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O’Callaghan K, Covic L, Kuliopulos A (2009) Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 137:332–343PubMedCrossRefGoogle Scholar
  53. 53.
    Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, Altevogt P, Bar-Shavit R (2001) Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 276:10952–10962PubMedCrossRefGoogle Scholar
  54. 54.
    Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y, Reich R, Vlodavsky I, Bar-Shavit R (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4:909–914PubMedCrossRefGoogle Scholar
  55. 55.
    Wojtukiewicz MZ, Tang DG, Ben-Josef E, Renaud C, Walz DA, Honn KV (1995) Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Res 55:698–704PubMedGoogle Scholar
  56. 56.
    Kaufmann R, Schafberg H, Rudroff C, Nowak G (1997) Thrombin receptor activation results in calcium signaling and protein kinase C-dependent stimulation of DNA synthesis in HEp-2g laryngeal carcinoma cells. Cancer 80:2068–2074PubMedCrossRefGoogle Scholar
  57. 57.
    Rudroff C, Schafberg H, Nowak G, Weinel R, Scheele J, Kaufmann R (1998) Characterization of functional thrombin receptors in human pancreatic tumor cells (MIA PACA-2). Pancreas 16:189–194PubMedCrossRefGoogle Scholar
  58. 58.
    Kaufmann R, Lindschau C, Höer A, Henklein P, Adomeit A, Haller H, Liebmann C, Oberdisse E, Nowak G (1996) Signaling effects of alpha-thrombin and SFLLRN in rat glioma C6 cells. J Neurosci Res 46:641–651PubMedCrossRefGoogle Scholar
  59. 59.
    Schafberg H, Nowak G, Kaufmann R (1997) Thrombin has a bimodal effect on glioma cell growth. Br J Cancer 76:1592–1595PubMedCrossRefGoogle Scholar
  60. 60.
    Kaufmann R, Patt S, Schafberg H, Kalff R, Neupert G, Nowak G (1998) Functional thrombin receptor PAR1 in primary cultures of human glioblastoma cells. Neuroreport 9:709–712PubMedCrossRefGoogle Scholar
  61. 61.
    Zieger M, Tausch S, Henklein P, Nowak G, Kaufmann R (2001) A novel PAR-1-type thrombin receptor signaling pathway: cyclic AMP-independent activation of PKA in SNB-19 glioblastoma cells. Biochem Biophys Res Commun 282:952–957PubMedCrossRefGoogle Scholar
  62. 62.
    Kaufmann R, Patt S, Kraft R, Zieger M, Henklein P, Neupert G, Nowak G (1999) PAR 1-type thrombin receptors are involved in thrombin-induced calcium signaling in human meningioma cells. J Neurooncol 42:131–136PubMedCrossRefGoogle Scholar
  63. 63.
    Chay CH, Cooper CR, Gendernalik JD, Dhanasekaran SM, Chinnaiyan AM, Rubin MA, Schmaier AH, Pienta KJ (2002) A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology 60:760–765PubMedCrossRefGoogle Scholar
  64. 64.
    Darmoul D, Gratio V, Devaud H, Lehy T, Laburthe M (2003) Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am J Pathol 162:1503–1513PubMedCrossRefGoogle Scholar
  65. 65.
    Nierodzik ML, Bain RM, Liu LX, Shivji M, Takeshita K, Karpatkin S (1996) Presence of the seven transmembrane thrombin receptor on human tumour cells: effect of activation on tumour adhesion to platelets and tumor tyrosine phosphorylation. Br J Haematol 92:452–457PubMedCrossRefGoogle Scholar
  66. 66.
    Helland IB, Klementsen B, Jørgensen L (1997) Addition of both platelets and thrombin in combination accelerates tumor cells to adhere to endothelial cells in vitro. In Vitro Cell Dev Biol Anim 33:182–186PubMedCrossRefGoogle Scholar
  67. 67.
    Klementsen B, Jørgensen L (1997) Distribution of adhesion molecules on HeLa cells, platelets and endothelium in an in vitro model mimicking the early phase of metastasis. An immunogold electron microscopic study. APMIS 105:546–558PubMedCrossRefGoogle Scholar
  68. 68.
    Rudroff C, Seibold S, Kaufmann R, Zetina CC, Reise K, Schäfer U, Schneider A, Brockmann M, Scheele J, Neugebauer EA (2002) Expression of the thrombin receptor PAR-1 correlates with tumour cell differentiation of pancreatic adenocarcinoma in vitro. Clin Exp Metastasis 19:181–189PubMedCrossRefGoogle Scholar
  69. 69.
    Nierodzik ML, Chen K, Takeshita K, Li JJ, Huang YQ, Feng XS, D’Andrea MR, Andrade-Gordon P, Karpatkin S (1998) Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 92:3694–3700PubMedGoogle Scholar
  70. 70.
    Henrikson KP, Salazar SL, Fenton JW, Pentecost BT (1999) Role of thrombin receptor in breast cancer invasiveness. Br J Cancer 79:401–406PubMedCrossRefGoogle Scholar
  71. 71.
    Bergmann S, Junker K, Henklein P, Hollenberg MD, Settmacher U, Kaufmann R (2006) PAR-type thrombin receptors in renal carcinoma cells: PAR1-mediated EGFR activation promotes cell migration. Oncol Rep 15:889–893PubMedGoogle Scholar
  72. 72.
    Kaufmann R, Rahn S, Pollrich K, Hertel J, Dittmar Y, Hommann M, Henklein P, Biskup C, Westermann M, Hollenberg M, Settmacher U (2007) Thrombin-mediated hepatocellular carcinoma cell migration: cooperative action via proteinase-activated receptors 1 and 4. J Cell Physiol 211:699–707PubMedCrossRefGoogle Scholar
  73. 73.
    Kaufmann R, Patt S, Zieger M, Kraft R, Tausch S, Henklein P, Nowak G (2000) The two-receptor system PAR-1/PAR-4 mediates alpha-thrombin-induced [Ca(2+)](i) mobilization in human astrocytoma cells. J Cancer Res Clin Oncol 126:91–94PubMedCrossRefGoogle Scholar
  74. 74.
    Darmoul D, Gratio V, Devaud H, Laburthe M (2004) Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem 279:20927–20934PubMedCrossRefGoogle Scholar
  75. 75.
    Hjortoe GM, Petersen LC, Albrektsen T, Sorensen BB, Norby PL, Mandal SK, Rao L (2004) Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 103:3029–3037PubMedCrossRefGoogle Scholar
  76. 76.
    Jikuhara A, Yoshii M, Iwagaki H, Mori S, Nishibori M, Tanaka N (2003) MAP kinase-mediated proliferation of DLD-1 carcinoma by the stimulation of protease-activated receptor 2. Life Sci 73:2817–2829PubMedCrossRefGoogle Scholar
  77. 77.
    Shi X, Gangadharan B, Brass L, Ruf W, Mueller B (2004) Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2:395–402PubMedGoogle Scholar
  78. 78.
    Shimamoto R, Sawada T, Uchima Y, Inoue M, Kimura K, Yamashita Y, Yamada N, Nishihara T, Ohira M, Hirakawa K (2004) A role for protease-activated receptor-2 in pancreatic cancer cell proliferation. Int J Oncol 24:1401–1406PubMedGoogle Scholar
  79. 79.
    Rattenholl A, Seeliger S, Buddenkotte J, Schön M, Schön M, Ständer S, Vergnolle N, Steinhoff M (2007) Proteinase-activated receptor-2 (PAR2): a tumor suppressor in skin carcinogenesis. J Invest Dermatol 127:2245–2252PubMedCrossRefGoogle Scholar
  80. 80.
    Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J (2006) Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 66:307–314PubMedCrossRefGoogle Scholar
  81. 81.
    Versteeg H, Schaffner F, Kerver M, Petersen H, Ahamed J, Felding-Habermann B, Takada Y, Mueller B, Ruf W (2008) Inhibition of tissue factor signaling suppresses tumor growth. Blood 111:190–199PubMedCrossRefGoogle Scholar
  82. 82.
    Bocheva G, Rattenholl A, Kempkes C, Goerge T, Lin C, D’Andrea M, Ständer S, Steinhoff M (2009) Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol 129:1816–1823PubMedCrossRefGoogle Scholar
  83. 83.
    Kaufmann R, Oettel C, Horn A, Halbhuber KJ, Eitner A, Krieg R, Katenkamp K, Henklein P, Westermann M, Bohmer FD, Ramachandran R, Saifeddine M, Hollenberg MD, Settmacher U (2009) Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion. Carcinogenesis 30:1487–1496PubMedCrossRefGoogle Scholar
  84. 84.
    Gonda K, Watanabe TM, Ohuchi N, Higuchi H (2010) In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J Biol Chem 285:2750–2757PubMedCrossRefGoogle Scholar
  85. 85.
    Su S, Li Y, Luo Y, Sheng Y, Su Y, Padia RN, Pan ZK, Dong Z, Huang S (2009) Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene 28:3047–3057PubMedCrossRefGoogle Scholar
  86. 86.
    Kamath L, Meydani A, Foss F, Kuliopulos A (2001) Signaling from protease-activated receptor-1 inhibits migration and invasion of breast cancer cells. Cancer Res 61:5933–5940PubMedGoogle Scholar
  87. 87.
    Blum AE, Joseph SM, Przybylski RJ, Dubyak GR (2008) Rho-family GTPases modulate Ca(2+) -dependent ATP release from astrocytes. Am J Physiol Cell Physiol 295:C231–C241PubMedCrossRefGoogle Scholar
  88. 88.
    Darmoul D, Marie JC, Devaud H, Gratio V, Laburthe M (2001) Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. Br J Cancer 85:772–779PubMedCrossRefGoogle Scholar
  89. 89.
    Darmoul D, Gratio V, Devaud H, Peiretti F, Laburthe M (2004) Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Mol Cancer Res 2:514–522PubMedGoogle Scholar
  90. 90.
    Gratio V, Walker F, Lehy T, Laburthe M, Darmoul D (2009) Aberrant expression of proteinase-activated receptor 4 promotes colon cancer cell proliferation through a persistent signaling that involves Src and ErbB-2 kinase. Int J Cancer 124:1517–1525PubMedCrossRefGoogle Scholar
  91. 91.
    De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447PubMedCrossRefGoogle Scholar
  92. 92.
    Micke P, Ostman A (2004) Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45(Suppl 2):S163–S175PubMedCrossRefGoogle Scholar
  93. 93.
    Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19:67–73PubMedCrossRefGoogle Scholar
  94. 94.
    Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725PubMedCrossRefGoogle Scholar
  95. 95.
    Vitolo D, Ciocci L, Cicerone E, Rossi C, Tiboni F, Ferrauti P, Gallo A, Baroni CD (2001) Laminin alpha2 chain (merosin M chain) distribution and VEGF, FGF(2), and TGFbeta1 gene expression in angiogenesis of supraglottic, lung, and breast carcinomas. J Pathol 195:197–208PubMedCrossRefGoogle Scholar
  96. 96.
    Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR (2002) Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 62:3298–3307PubMedGoogle Scholar
  97. 97.
    D’Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P (2001) Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol 158:2031–2041PubMedCrossRefGoogle Scholar
  98. 98.
    Blackburn JS, Brinckerhoff CE (2008) Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am J Pathol 173:1736–1746PubMedCrossRefGoogle Scholar
  99. 99.
    Wang W, Zhang X, Mize G, Takayama T (2008) Protease-activated receptor-I upregulates fibroblast growth factor 7 in stroma of benign prostatic hyperplasia. Prostate 68:1064–1075PubMedCrossRefGoogle Scholar
  100. 100.
    Al-Ani B, Hewett P, Cudmore M, Fujisawa T, Saifeddine M, Williams H, Ramma W, Sissaoui S, Jayaraman P, Ohba M, Ahmad S, Hollenberg M, Ahmed A (2010) Activation of proteinase-activated receptor 2 stimulates soluble vascular endothelial growth factor receptor 1 release via epidermal growth factor receptor transactivation in endothelial cells. Hypertension 55(3):689–697PubMedCrossRefGoogle Scholar
  101. 101.
    Nakanuma S, Tajima H, Okamoto K, Hayashi H, Nakagawara H, Onishi I, Takamura H, Kitagawa H, Fushida S, Tani T, Fujimura T, Kayahara M, Ohta T, Wakayama T, Iseki S, Harada S (2010) Tumor-derived trypsin enhances proliferation of intrahepatic cholangiocarcinoma cells by activating protease-activated receptor-2. Int J Oncol 36:793–800PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang X, Wang W, True L, Vessella R, Takayama T (2009) Protease-activated receptor-1 is upregulated in reactive stroma of primary prostate cancer and bone metastasis. Prostate 69:727–736PubMedCrossRefGoogle Scholar
  103. 103.
    Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, Kiefer P, Bosserhoff A, Hellerbrand C (2009) Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100:646–653PubMedCrossRefGoogle Scholar
  104. 104.
    Grynkiewicz G, Poenie M, Tsien R (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  105. 105.
    Gee K, Brown K, Chen W, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27:97–106PubMedCrossRefGoogle Scholar
  106. 106.
    Bootman M, Collins T, Peppiatt C, Prothero L, MacKenzie L, De Smet P, Travers M, Tovey S, Seo J, Berridge M, Ciccolini F, Lipp P (2001) Calcium signalling–an overview. Semin Cell Dev Biol 12:3–10PubMedCrossRefGoogle Scholar
  107. 107.
    Berridge M, Bootman M, Roderick H (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRefGoogle Scholar
  108. 108.
    Clapham D (2007) Calcium signaling. Cell 131:1047–1058PubMedCrossRefGoogle Scholar
  109. 109.
    Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122PubMedCrossRefGoogle Scholar
  110. 110.
    Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408PubMedCrossRefGoogle Scholar
  111. 111.
    Brown EM, Pollak M, Hebert SC (1998) The extracellular calcium-sensing receptor: its role in health and disease. Annu Rev Med 49:15–29PubMedCrossRefGoogle Scholar
  112. 112.
    Brown EM, Pollak M, Chou YH, Seidman CE, Seidman JG, Hebert SC (1995) Cloning and functional characterization of extracellular Ca(2+)-sensing receptors from parathyroid and kidney. Bone 17:7S–11SPubMedCrossRefGoogle Scholar
  113. 113.
    Gutkind JS (1998) Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17:1331–1342PubMedCrossRefGoogle Scholar
  114. 114.
    Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE (2003) Insights into G protein structure, function, and regulation. Endocr Rev 24:765–781PubMedCrossRefGoogle Scholar
  115. 115.
    Spiegelberg BD, Hamm HE (2007) Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr Opin Genet Dev 17:40–44PubMedCrossRefGoogle Scholar
  116. 116.
    Abdul M, Ramlal S, Hoosein N (2008) Ryanodine receptor expression correlates with tumor grade in breast cancer. Pathol Oncol Res 14:157–160PubMedCrossRefGoogle Scholar
  117. 117.
    Jaffe LF (2005) A calcium-based theory of carcinogenesis. Adv Cancer Res 94:231–263PubMedCrossRefGoogle Scholar
  118. 118.
    Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530PubMedCrossRefGoogle Scholar
  119. 119.
    Capiod T, Shuba Y, Skryma R, Prevarskaya N (2007) Calcium signalling and cancer cell growth. Subcell Biochem 45:405–427PubMedCrossRefGoogle Scholar
  120. 120.
    Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375PubMedCrossRefGoogle Scholar
  121. 121.
    Denmeade SR, Isaacs JT (2005) The SERCA pump as a therapeutic target: making a “smart bomb” for prostate cancer. Cancer Biol Ther 4:14–22PubMedCrossRefGoogle Scholar
  122. 122.
    Kaddour-Djebbar I, Choudhary V, Brooks C, Ghazaly T, Lakshmikanthan V, Dong Z, Kumar MV (2010) Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells. Int J Oncol 36:1437–1444PubMedGoogle Scholar
  123. 123.
    McCubrey JA, Abrams SL, Stadelman K, Chappell WH, Lahair M, Ferland RA, Steelman LS (2010) Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells. Adv Enzyme Regul 50:285–307PubMedCrossRefGoogle Scholar
  124. 124.
    Lin J, Denmeade S, Carducci MA (2009) HIF-1alpha and calcium signaling as targets for treatment of prostate cancer by cardiac glycosides. Curr Cancer Drug Targets 9:881–887PubMedCrossRefGoogle Scholar
  125. 125.
    Turner JS, Redpath GT, Humphries JE, Gonias SL, Vandenberg SR (1994) Plasmin modulates the thrombin-evoked calcium response in C6 glioma cells. Biochem J 297(Pt 1): 175–179PubMedGoogle Scholar
  126. 126.
    Kawabata A, Saifeddine M, Al-Ani B, Leblond L, Hollenberg MD (1999) Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: activation of PAR2 by PAR1-targeted ligands. J Pharmacol Exp Ther 288:358–370PubMedGoogle Scholar
  127. 127.
    Kaufmann R, Schafberg H, Nowak G (1998) Proteinase-activated receptor-2-mediated signaling and inhibition of DNA synthesis in human pancreatic cancer cells. Int J Pancreatol 24:97–102PubMedGoogle Scholar
  128. 128.
    Kaufmann R, Junker U, Nuske K, Westermann M, Henklein P, Scheele J, Junker K (2002) PAR-1- and PAR-3-type thrombin receptor expression in primary cultures of human renal cell carcinoma cells. Int J Oncol 20:177–180PubMedGoogle Scholar
  129. 129.
    Kanno H, Horikawa Y, Hodges R, Zoukhri D, Shatos M, Rios J, Dartt D (2003) Cholinergic agonists transactivate EGFR and stimulate MAPK to induce goblet cell secretion. Am J Physiol Cell Physiol 284:C988–C998PubMedGoogle Scholar
  130. 130.
    Hodges R, Horikawa Y, Rios J, Shatos M, Dartt D (2007) Effect of protein kinase C and Ca(2+) on p42/p44 MAPK, Pyk2, and Src activation in rat conjunctival goblet cells. Exp Eye Res 85:836–844PubMedCrossRefGoogle Scholar
  131. 131.
    Ramsay AJ, Dong Y, Hunt ML, Linn M, Samaratunga H, Clements JA, Hooper JD (2008) Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression. J Biol Chem 283:12293–12304PubMedCrossRefGoogle Scholar
  132. 132.
    Gearhart T, Bouchard M (2010) The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J Virol 84:2675–2686PubMedCrossRefGoogle Scholar
  133. 133.
    Kaufmann R, Mußbach F, Henklein P, Settmacher U (2011) Proteinase-activated receptor 2-mediated calcium signaling in hepatocellular carcinoma cells. J Cancer Res Clin Oncol 137(6):965–973PubMedCrossRefGoogle Scholar
  134. 134.
    Huynh H, Nguyen T, Chow K, Tan P, Soo K, Tran E (2003) Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol 3:19PubMedCrossRefGoogle Scholar
  135. 135.
    Tsuboi Y, Ichida T, Sugitani S, Genda T, Inayoshi J, Takamura M, Matsuda Y, Nomoto M, Aoyagi Y (2004) Overexpression of extracellular signal-regulated protein kinase and its correlation with proliferation in human hepatocellular carcinoma. Liver Int 24:432–436PubMedCrossRefGoogle Scholar
  136. 136.
    Klein P, Schmidt C, Wiesenauer C, Choi J, Gage E, Yip-Schneider M, Wiebke E, Wang Y, Omer C, Sebolt-Leopold J (2006) The effects of a novel MEK inhibitor PD184161 on MEK-ERK signaling and growth in human liver cancer. Neoplasia 8:1–8PubMedCrossRefGoogle Scholar
  137. 137.
    Calvisi D, Pascale R, Feo F (2007) Dissection of signal transduction pathways as a tool for the development of targeted therapies of hepatocellular carcinoma. Rev Recent Clin Trials 2:217–236PubMedCrossRefGoogle Scholar
  138. 138.
    Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205PubMedCrossRefGoogle Scholar
  139. 139.
    Berridge MJ, Rapp PE (1979) A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 81:217–279PubMedGoogle Scholar
  140. 140.
    Berridge MJ (2007) Inositol trisphosphate and calcium oscillations. Biochem Soc Symp 74:1–7PubMedCrossRefGoogle Scholar
  141. 141.
    Seatter MJ, Drummond R, Kanke T, Macfarlane SR, Hollenberg MD, Plevin R (2004) The role of the C-terminal tail in protease-activated receptor-2-mediated Ca2+ signalling, proline-rich tyrosine kinase-2 activation, and mitogen-activated protein kinase activity. Cell Signal 16:21–29PubMedCrossRefGoogle Scholar
  142. 142.
    Chen X, Berrou J, Vigneau C, Rondeau E (2001) Role of the third intracellular loop and of the cytoplasmic tail in the mitogenic signaling of the protease-activated receptor 1. Int J Mol Med 8:309–314PubMedGoogle Scholar
  143. 143.
    Goh FG, Ng PY, Nilsson M, Kanke T, Plevin R (2009) Dual effect of the novel peptide antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol 158:1695–1704PubMedCrossRefGoogle Scholar
  144. 144.
    Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A (2002) Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci USA 99:643–648PubMedCrossRefGoogle Scholar
  145. 145.
    Tressel SL, Koukos G, Tchernychev B, Jacques SL, Covic L, Kuliopulos A (2011) Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol Biol 683:259–275PubMedCrossRefGoogle Scholar
  146. 146.
    Yang E, Boire A, Agarwal A, Nguyen N, O’Callaghan K, Tu P, Kuliopulos A, Covic L (2009) Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res 69:6223–6231PubMedCrossRefGoogle Scholar
  147. 147.
    Covic L, Misra M, Badar J, Singh C, Kuliopulos A (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med 8:1161–1165PubMedCrossRefGoogle Scholar
  148. 148.
    Agarwal A, Covic L, Sevigny LM, Kaneider NC, Lazarides K, Azabdaftari G, Sharifi S, Kuliopulos A (2008) Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Mol Cancer Ther 7:2746–2757PubMedCrossRefGoogle Scholar
  149. 149.
    Sevigny LM, Zhang P, Bohm A, Lazarides K, Perides G, Covic L, Kuliopulos A (2011) Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc Natl Acad Sci USA 108(20):8491–8496PubMedCrossRefGoogle Scholar
  150. 150.
    Iida-Klein A, Guo J, Takemura M, Drake MT, Potts JT, Abou-Samra A, Bringhurst FR, Segre GV (1997) Mutations in the second cytoplasmic loop of the rat parathyroid hormone (PTH)/PTH-related protein receptor result in selective loss of PTH-stimulated phospholipase C activity. J Biol Chem 272:6882–6889PubMedCrossRefGoogle Scholar
  151. 151.
    Cotecchia S, Ostrowski J, Kjelsberg MA, Caron MG, Lefkowitz RJ (1992) Discrete amino acid sequences of the alpha 1-adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis. J Biol Chem 267:1633–1639PubMedGoogle Scholar
  152. 152.
    Estall JL, Koehler JA, Yusta B, Drucker DJ (2005) The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation. J Biol Chem 280:22124–22134PubMedCrossRefGoogle Scholar
  153. 153.
    Budd DC, McDonald J, Emsley N, Cain K, Tobin AB (2003) The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 278:19565–19573PubMedCrossRefGoogle Scholar
  154. 154.
    Wess J, Bonner TI, Brann MR (1990) Chimeric m2/m3 muscarinic receptors: role of carboxyl terminal receptor domains in selectivity of ligand binding and coupling to phosphoinositide hydrolysis. Mol Pharmacol 38:872–877PubMedGoogle Scholar
  155. 155.
    Dowal L, Sim DS, Dilks JR, Blair P, Beaudry S, Denker BM, Koukos G, Kuliopulos A, Flaumenhaft R (2011) Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR1. Proc Natl Acad Sci USA 108:2951–2956PubMedCrossRefGoogle Scholar
  156. 156.
    García-López MT, Gutiérrez-Rodríguez M, Herranz R (2010) Thrombin-activated receptors: promising targets for cancer therapy? Curr Med Chem 17:109–128PubMedCrossRefGoogle Scholar
  157. 157.
    O’Donoghue ML, Bhatt DL, Wiviott SD, Goodman SG, Fitzgerald DJ, Angiolillo DJ, Goto S, Montalescot G, Zeymer U, Aylward PE, Guetta V, Dudek D, Ziecina R, Contant CF, Flather MD, Investigators obotLA (2011) Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes: the lessons from antagonizing the cellular effects of thrombin-acute coronary syndromes trial. Circulation 123(17):1843–1853PubMedCrossRefGoogle Scholar
  158. 158.
    Leonardi S, Tricoci P, Mahaffey KW (2012) Promises of PAR-1 inhibition in acute coronary syndrome. Curr Cardiol Rep 14(1):32–39Google Scholar
  159. 159.
    Wiviott SD, Flather MD, O’Donoghue ML, Goto S, Fitzgerald DJ, Cura F, Aylward P, Guetta V, Dudek D, Contant CF, Angiolillo DJ, Bhatt DL, Investigators obotLC (2011) Randomized trial of atopaxar in the treatment of patients with coronary artery disease: the lessons from antagonizing the cellular effect of thrombin-coronary artery disease trial. Circulation 123(17):1854–1863PubMedCrossRefGoogle Scholar
  160. 160.
    Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP (2010) Novel agonists and antagonists for human protease activated receptor 2. J Med Chem 53:7428–7440PubMedCrossRefGoogle Scholar
  161. 161.
    Ghali J, Smith W, Torre-Amione G, Haynos W, Rayburn B, Amato A, Zhang D, Cowart D, Valentini G, Carminati P, Gheorghiade M (2007) A phase 1–2 dose-escalating study evaluating the safety and tolerability of istaroxime and specific effects on electrocardiographic and hemodynamic parameters in patients with chronic heart failure with reduced systolic function. Am J Cardiol 99:47A–56APubMedCrossRefGoogle Scholar
  162. 162.
    Triposkiadis F, Parissis JT, Starling RC, Skoularigis J, Louridas G (2009) Current drugs and medical treatment algorithms in the management of acute decompensated heart failure. Expert Opin Investig Drugs 18:695–707PubMedCrossRefGoogle Scholar
  163. 163.
    Talukder MA, Zweier JL, Periasamy M (2009) Targeting calcium transport in ischaemic heart disease. Cardiovasc Res 84:345–352PubMedCrossRefGoogle Scholar
  164. 164.
    Duncan RS, Goad DL, Grillo MA, Kaja S, Payne AJ, Koulen P (2010) Control of intracellular calcium signaling as a neuroprotective strategy. Molecules 15:1168–1195PubMedCrossRefGoogle Scholar
  165. 165.
    Roberts L, Gores G (2005) Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis 25:212–225PubMedCrossRefGoogle Scholar
  166. 166.
    Beeram M, Patnaik A (2002) Targeting intracellular signal transduction. A new paradigm for a brave new world of molecularly targeted therapeutics. Hematol Oncol Clin North Am 16:1089–1100PubMedCrossRefGoogle Scholar
  167. 167.
    Levitzki A, Klein S (2010) Signal transduction therapy of cancer. Mol Aspects Med 31:287–329PubMedCrossRefGoogle Scholar
  168. 168.
    Wilhelm S, Chien DS (2002) BAY 43-9006: preclinical data. Curr Pharm Des 8:2255–2257PubMedCrossRefGoogle Scholar
  169. 169.
    Sharma PS, Sharma R, Tyagi T (2011) VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: present and future. Curr Cancer Drug Targets 11(5):624–653PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Experimental Transplantation Surgery, Department of General, Visceral and Vascular SurgeryJena University HospitalJenaGermany
  2. 2.Inflammation Research Network, Department of Physiology & Pharmacology and Department of Medicine, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations