Skip to main content

Combined Computational and Experimental Approaches to Understanding the Ca2+ Regulatory Network in Neurons

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Ca2+ is a ubiquitous signaling ion that regulates a variety of neuronal functions by binding to and altering the state of effector proteins. Spatial relationships and temporal dynamics of Ca2+ elevations determine many cellular responses of neurons to chemical and electrical stimulation. There is a wealth of information regarding the properties and distribution of Ca2+ channels, pumps, exchangers, and buffers that participate in Ca2+ regulation. At the same time, new imaging techniques permit characterization of evoked Ca2+ signals with increasing spatial and temporal resolution. However, understanding the mechanistic link between functional properties of Ca2+ handling proteins and the stimulus-evoked Ca2+ signals they orchestrate requires consideration of the way Ca2+ handling mechanisms operate together as a system in native cells. A wide array of biophysical modeling approaches is available for studying this problem and can be used in a variety of ways. Models can be useful to explain the behavior of complex systems, to evaluate the role of individual Ca2+ handling mechanisms, to extract valuable parameters, and to generate predictions that can be validated experimentally. In this review, we discuss recent advances in understanding the underlying mechanisms of Ca2+ signaling in neurons via mathematical modeling. We emphasize the value of developing realistic models based on experimentally validated descriptions of Ca2+ transport and buffering that can be tested and refined through new experiments to develop increasingly accurate biophysical descriptions of Ca2+ signaling in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaff J, Loew LM (1999) The virtual cell. Pac Symp Biocomput 4:228–239

    Google Scholar 

  2. Iyer V, Hoogland TM, Saggau P (2006) Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J Neurophysiol 95:535–545

    Article  PubMed  Google Scholar 

  3. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405

    Article  PubMed  CAS  Google Scholar 

  4. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437

    Article  PubMed  CAS  Google Scholar 

  5. Knöpfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES (2010) Toward the second generation of optogenetic tools. J Neurosci 30:14998–15004

    Article  PubMed  CAS  Google Scholar 

  6. Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19:520–529

    Article  PubMed  CAS  Google Scholar 

  7. Wallace DJ, Meyer zum Alten Borgloh S, Astori S, Yang Y, Bausen M, Kügler S, Palmer AE, Tsien RY, Sprengel R, Kerr JN, Denk W, Hasan MT (2008) Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5:797–804

    Article  PubMed  CAS  Google Scholar 

  8. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neuronal activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  9. Lütcke H, Murayama M, Hahn T, Margolis DJ, Astori S, Zum Alten Borgloh SM, Göbel W, Yang Y, Tang W, Kügler S, Sprengel R, Nagai T, Miyawaki A, Larkum ME, Helmchen F, Hasan MT (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely-moving mice. Front Neural Circuits 4:9

    PubMed  Google Scholar 

  10. Higley MJ, Sabatini BL (2008) Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59:902–913

    Article  PubMed  CAS  Google Scholar 

  11. Fink CC, Slepchenko B, Moraru II, Watras J, Schaff JC, Loew LM (2000) An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys J 79:163–183

    Article  PubMed  CAS  Google Scholar 

  12. Patterson M, Sneyd J, Friel DD (2007) Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering. J Gen Physiol 129:29–56

    Article  PubMed  CAS  Google Scholar 

  13. Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38:161–169

    Article  PubMed  CAS  Google Scholar 

  14. Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL (2009) An update on nuclear calcium signalling. J Cell Sci 122:2337–2350

    Article  PubMed  CAS  Google Scholar 

  15. Piedras-Rentería ES, Barrett CF, Cao YQ, Tsien RW (2007) Voltage-gated calcium channels, calcium signaling, and channelopathies. In: Krebs J, Michalak M (eds) Calcium: a matter of life and death. Elsevier, Amsterdam pp 127–166

    Chapter  Google Scholar 

  16. Strehler EE, Filoteo AG, Penniston JT, Caride AJ (2007) Plasma-membrane Ca2+ pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans 35(Pt 5):919–922

    PubMed  CAS  Google Scholar 

  17. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling. Nat Rev Neurosci 8:182–193

    Article  PubMed  CAS  Google Scholar 

  18. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg M, De Pità M, Volman V, Berry H, Ben-Jacob E (2010) Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6:e1000909

    Article  PubMed  CAS  Google Scholar 

  20. Kang M, Othmer HG (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19:037116

    Article  PubMed  CAS  Google Scholar 

  21. Kapela A, Nagaraja S, Tsoukias NM (2010) A mathematical model of vasoreactivity in rat mesenteric arterioles. II. Conducted vasoreactivity. Am J Physiol Heart Circ Physiol 298:H52–H65

    Article  PubMed  CAS  Google Scholar 

  22. Jafri MS, Rice JJ, Winslow RL (1998) Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 74:1149–1168

    Article  PubMed  CAS  Google Scholar 

  23. Shannon TR, Wang F, Puglisi J, Weber C, Bers DM (2004) A mathematical treatment of integrated Ca2+ dynamics within the ventricular myocyte. Biophys J 87:3351–3371

    Article  PubMed  CAS  Google Scholar 

  24. Cortassa S, Aon MA, Marbán E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734–2755

    Article  PubMed  CAS  Google Scholar 

  25. Magnus G, Keizer J (1997) Minimal model of β-cell Ca2+ mitochondrial Ca2+ handling. Am J Physiol 273:C717–C733

    PubMed  CAS  Google Scholar 

  26. Magnus J, Keizer J (1998) Model of β-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. Am J Physiol 274:C1158–C1173

    PubMed  CAS  Google Scholar 

  27. Magnus J, Keizer J (1998) Model of β-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. Am J Physiol 274:C1174–C1184

    PubMed  CAS  Google Scholar 

  28. Fall CP, Keizer JE (2001) Mitochondrial modulation of intracellular Ca2+ signaling. J Theor Biol 210:151–165

    Article  PubMed  CAS  Google Scholar 

  29. Means S, Smith AJ, Shepherd J, Shadid J, Fowler J, Wojcikiewicz RJ, Mazel T, Smith GD, Wilson BS (2006) Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys J 91:537–557

    Article  PubMed  CAS  Google Scholar 

  30. Goldbeter A, Dupont G, Berridge MG (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87:1461–1465

    Article  PubMed  CAS  Google Scholar 

  31. Dupont G, Goldbeter A (1993) One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium 14:311–322

    Article  PubMed  CAS  Google Scholar 

  32. De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci USA 89:9895–9899

    Article  PubMed  Google Scholar 

  33. Keizer J, De Young GW (1992) Two roles of Ca2+ in agonist stimulated Ca2+ oscillations. Biophys J 61:649–660

    Article  PubMed  CAS  Google Scholar 

  34. Atri A, Amundson J, Clapham D, Sneyd J (1993) A single-pool model for calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J 65:1727–1739

    Article  PubMed  CAS  Google Scholar 

  35. Jafri MS (1995) A theoretical study of cytosolic calcium waves in Xenopus oocytes. J Theor Biol 172:209–216

    Article  PubMed  CAS  Google Scholar 

  36. Falcke M, Li Y, Lechleiter JD, Camacho P (2003) Modeling the dependence of the period of intracellular Ca2+ waves on SERCA expression. Biophys J 85:1474–1481

    Article  PubMed  CAS  Google Scholar 

  37. Sneyd J, Tsaneva-Atanasova K, Yule DI, Thompson JL, Shuttleworth TJ (2004) Control of calcium oscillations by membrane fluxes. Proc Natl Acad Sci USA 101:1392–1396

    Article  PubMed  CAS  Google Scholar 

  38. Higgins ER, Cannell MB, Sneyd J (2006) A buffering SERCA pump in models of calcium dynamics. Biophys J 91:151–163

    Article  PubMed  CAS  Google Scholar 

  39. Tang Y, Othmer HG (1994) A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J 67:2223–2235

    Article  PubMed  CAS  Google Scholar 

  40. Roth BJ, Yagodin SV, Holtzclaw L, Russell JT (1995) A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium 17:53–64

    Article  PubMed  CAS  Google Scholar 

  41. Sneyd J, Keizer J, Sanderson MJ (1995) Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J 9:1463–1472

    PubMed  CAS  Google Scholar 

  42. Keizer J, Levine L (1996) Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca21 oscillations. Biophys J 71:3477–3487

    Article  PubMed  CAS  Google Scholar 

  43. Kupferman R, Mitra PP, Hohenberg PC, Wang SS (1997) Analytical calculation of calcium wave characteristics. Biophys J 72:2430–2444

    Article  PubMed  CAS  Google Scholar 

  44. Thul R, Smith GD, Coombes S (2008) A bidomain threshold model of propagating calcium waves. J Math Biol 56:435–463

    Article  PubMed  CAS  Google Scholar 

  45. Swietach P, Spitzer KW, Vaughan-Jones RD (2010) Modeling calcium waves in cardiac myocytes: importance of calcium diffusion. Front Biosci 15:661–680

    Article  PubMed  CAS  Google Scholar 

  46. Li YX, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin–Huxley-like formalism. J Theor Biol 166:461–473

    Article  PubMed  CAS  Google Scholar 

  47. Li YX, Rinzel J, Vergara L, Stojilcović SS (1995) Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. Biophys J 69:785–795

    Article  PubMed  CAS  Google Scholar 

  48. Coombes S, Timofeeva Y (2003) Sparks and waves in a stochastic fire-diffuse-fire model of Ca2+ release. Phys Rev E Stat Nonlin Soft Matter Phys 68:021915

    Article  PubMed  CAS  Google Scholar 

  49. Keener JP (2006) Stochastic calcium oscillations. Math Med Biol 23:1–25

    Article  PubMed  Google Scholar 

  50. Dupont G, Abou-Lovergne A, Combettes L (2008) Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. Biophys J 95:2193–2202

    Article  PubMed  CAS  Google Scholar 

  51. Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC, Taylor CW, Falcke M (2008) How does intracellular Ca2+ oscillate: by chance or by the clock? Biophys J 94: 2404–2411

    Article  PubMed  CAS  Google Scholar 

  52. Skupin A, Kattenmann H, Falcke M (2010) Calcium signals driven by single channel noise. PLoS Comput Biol 6:e1000870

    Article  PubMed  CAS  Google Scholar 

  53. Rüdiger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M (2007) Hybrid stochastic and deterministic simulations of calcium blips. Biophys J 93:1847–1857

    Article  PubMed  CAS  Google Scholar 

  54. Falcke M (2009) Introduction to focus issue: intracellular Ca2+ dynamics − a change of modelling paradigm? Chaos 19:037101

    Article  PubMed  Google Scholar 

  55. Manita S, Ross WN (2009) Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal cells. J Neurosci 29:7833–7845

    Article  PubMed  CAS  Google Scholar 

  56. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  PubMed  CAS  Google Scholar 

  57. Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the General Neural Simulation System, 2nd edn. Springer, New York

    Google Scholar 

  58. Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM (1997) A general computational framework for modeling cellular structure and function. Biophys J 73:1135–1146

    Article  PubMed  CAS  Google Scholar 

  59. Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F, Lakshminarayana A, Gao F, Li Y, Loew LM (2008) The Virtual Cell modelling and simulation software environment. IET Syst Biol 2:353–362

    Article  Google Scholar 

  60. Stiles JR, Bartol TM Jr, Salpeter EE, Salpeter MM (1998) Monte Carlo simulation of neurotransmitter release using MCell, a general simulator of cellular physiological processes. In: Bower JM (ed) Computational neuroscience. Plenum Press, New York, pp 279–284

    Chapter  Google Scholar 

  61. Blaustein MP, Hodgkin AL (1969) The effect of cyanide on the efflux of calcium from squid axons. J Physiol 200:497–527

    PubMed  CAS  Google Scholar 

  62. Baker PF, Hodgkin AL, Ridgway EB (1971) Depolarization and calcium entry in squid giant axons. J Physiol 218:709–755

    PubMed  CAS  Google Scholar 

  63. Smith SJ, Zucker RS (1980) Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. J Physiol 300:167–196

    PubMed  CAS  Google Scholar 

  64. Connor JA, Nikolakopoulou G (1982) Calcium diffusion and buffering in nerve cytoplasm. Lect Math Life Sci 15:79–101

    CAS  Google Scholar 

  65. Sala F, Hernández-Cruz A (1990) Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J 57:313–324

    Article  PubMed  CAS  Google Scholar 

  66. Zucker RS, Stockbridge N (1983) Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse. J Neurosci 3:1263–1269

    PubMed  CAS  Google Scholar 

  67. Fogelson AL, Zucker RS (1985) Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys J 48:1003–1017

    Article  PubMed  CAS  Google Scholar 

  68. Simon SM, Llinás RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48:485–498

    Article  PubMed  CAS  Google Scholar 

  69. Yamada WM, Zucker RS (1992) Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys J 61:671–682

    Article  PubMed  CAS  Google Scholar 

  70. Roberts WM (1993) Spatial calcium buffering in saccular hair cells. Nature 363:74–76

    Article  PubMed  CAS  Google Scholar 

  71. Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346

    Article  PubMed  CAS  Google Scholar 

  72. Neher E (1986) Concentration profiles of intracellular Ca2+ in the presence of a diffusible chelator. Exp Brain Res Ser 14:80–96

    CAS  Google Scholar 

  73. Stern MD (1992) Buffering of calcium in the vicinity of a channel pore. Cell Calcium 13:183–192

    Article  PubMed  CAS  Google Scholar 

  74. Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17:6961–6973

    PubMed  CAS  Google Scholar 

  75. Wagner J, Keizer J (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J 67:447–456

    Article  PubMed  CAS  Google Scholar 

  76. Smith GD (1996) Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys J 71:3064–3072

    Article  PubMed  CAS  Google Scholar 

  77. Sherman A, Smith GD, Dai L, Miura RM (2001) Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J Appl Math 61:1816–1831

    Article  Google Scholar 

  78. Trommershäuser J, Schneggenburger R, Zippelius A, Neher E (2003) Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity. Biophys J 84:1563–1579

    Article  PubMed  Google Scholar 

  79. Mironova LA, Mironov SL (2008) Approximate analytical time-dependent solutions to describe large-amplitude local calcium transients in the presence of buffers. Biophys J 94:349–358

    Article  PubMed  CAS  Google Scholar 

  80. Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262

    PubMed  CAS  Google Scholar 

  81. Smith GD, Wagner J, Keizer J (1996) Validity of the rapid buffering approximation near a point source of calcium ions. Biophys J 70:2527–2539

    Article  PubMed  CAS  Google Scholar 

  82. Műller A, Kukley M, Stausberg P, Beck H, Műller W, Dietrich D (2005) Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons. J Neurosci 25:558–565

    Article  PubMed  CAS  Google Scholar 

  83. Műller A, Kukley M, Uebachs M, Beck H, Dietrich D (2007) Nanodomains of single Ca2+ channels contribute to action potential repolarization in cortical neurons. J Neurosci 27:483–495

    Article  PubMed  CAS  Google Scholar 

  84. Bucurenciu I, Kulik A, Schwaller B, Frostcher M, Jonas P (2008) Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57:536–545

    Article  PubMed  CAS  Google Scholar 

  85. Saftenku EE (2011) Effects of calretinin on Ca2+ signals in cerebellar granule cells: implications of cooperative Ca2+ binding. Cerebellum Epub ahead of print

    Google Scholar 

  86. Naoki H, Sakumura Y, Ishii S (2005) Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity. Mol Syst Biol 1:0027

    Article  PubMed  CAS  Google Scholar 

  87. Wu YC, Tucker T, Fettiplace R (1996) A theoretical study of calcium microdomains in turtle hair cells. Biophys J 71:2256–2275

    Article  PubMed  CAS  Google Scholar 

  88. Hall JD, Betarbet S, Jaramillo F (1997) Endogenous buffers limit the spread of free calcium in hair cells. Biophys J 73:1243–1252

    Article  PubMed  CAS  Google Scholar 

  89. Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cell. Biophys J 72:674–690

    Article  PubMed  CAS  Google Scholar 

  90. Cooper RL, Winslow JL, Govind CK, Atwood HL (1996) Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. J Neurophysiol 75:2451–2466

    PubMed  CAS  Google Scholar 

  91. DiGregorio DA, Peskoff A, Vergara JL (1999) Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J Neurosci 19:7846–7859

    PubMed  CAS  Google Scholar 

  92. Tang Y, Schlumpberger T, Kim T, Lueker M, Zucker RS (2000) Effects of mobile buffers on facilitation: experimental and computational studies. Biophys J 78:2735–2751

    Article  PubMed  CAS  Google Scholar 

  93. Matveev V, Sherman A, Zucker RS (2002) New and corrected simulations of synaptic facilitation. Biophys J 83:1368–1373

    Article  PubMed  CAS  Google Scholar 

  94. Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 86:2691–2709

    Article  PubMed  CAS  Google Scholar 

  95. Matveev V, Bertram R, Sherman A (2006) Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. J Neurophysiol 96:3389–3397

    Article  PubMed  Google Scholar 

  96. Bennett MR, Farnell L, Gibson WG (2004) The facilitated probability of quantal secretion within an array of calcium channels of an active zone at the amphibian neuromuscular ­junction. Biophys J 86:2674–2690

    Article  PubMed  CAS  Google Scholar 

  97. Lin JW, Fu Q, Allana T (2005) Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction. J Neurophysiol 94:377–386

    Article  PubMed  CAS  Google Scholar 

  98. Meinrenken CJ, Borst JG, Sakmann B (2002) Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J Neurosci 22:1648–1667

    PubMed  CAS  Google Scholar 

  99. Meinrenken CJ, Borst JG, Sakmann B (2003) Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 547(Pt 3):665–689

    PubMed  CAS  Google Scholar 

  100. Frank T, Khimich D, Neef A, Moser T (2009) Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. Proc Natl Acad Sci USA 106:4483–4488

    Article  PubMed  Google Scholar 

  101. Edmonds B, Reyes R, Schwaller B, Roberts WM (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3:786–790

    Article  PubMed  CAS  Google Scholar 

  102. Nägerl UV, Novo D, Mody I, Vergara JL (2000) Binding kinetics of calbindin-D28k determined by flash photolysis of caged Ca2+. Biophys J 79:3009–3018

    Article  PubMed  Google Scholar 

  103. Fakler B, Adelman JP (2008) Control of KCa channels by calcium nano/microdomains. Neuron 59:873–881

    Article  PubMed  CAS  Google Scholar 

  104. Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A (2003) Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38:79–88

    Article  PubMed  CAS  Google Scholar 

  105. Matveev V, Bertram R, Sherman A (2009) Ca2+ current versus Ca2+ channel cooperativity of exocytosis. J Neurosci 29:12196–12209

    Article  PubMed  CAS  Google Scholar 

  106. Bormann J, Brosens F, De Schutter E (2001) Modeling molecular diffusion. In: Bower JM, Bolouri H (eds) Computational methods in molecular and cellular biology: from genotype to phenotype. MIT, Boston, pp 189–224

    Google Scholar 

  107. Vasudeva K, Bhalla US (2004) Adaptive stochastic-deterministic chemical kinetic simulations. Bioinformatics 20:78–84

    Article  PubMed  CAS  Google Scholar 

  108. Holcman S, Schuss Z, Korkotian E (2004) Calcium dynamics in dendritic spines and spine motility. Biophys J 87:81–91

    Article  PubMed  CAS  Google Scholar 

  109. Gil A, Segura J, Pertusa JA, Soria B (2000) Monte Carlo simulation of 3-D buffered Ca2+ diffusion in neuroendocrine cells. Biophys J 78:13–33

    Article  PubMed  CAS  Google Scholar 

  110. Segura J, Gil A, Soria B (2000) Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters. Biophys J 79:1771–1786

    Article  PubMed  CAS  Google Scholar 

  111. Bennett MR, Farnell L, Gibson WG (2000) The probability of quantal secretion near a single calcium channel of an active zone. Biophys J 78:2201–2221

    Article  PubMed  CAS  Google Scholar 

  112. Bennett MR, Farnell L, Gibson WG (2000) The probability of quantal secretion within an array of calcium channels of an active zone. Biophys J 78:2222–2240

    Article  PubMed  CAS  Google Scholar 

  113. Shahrezaei V, Delaney KR (2004) Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a Monte Carlo study. Biophys J 87:2352–2364

    Article  PubMed  CAS  Google Scholar 

  114. Shagrezaei V, Delaney KR (2005) Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release. J Neurophysiol 94: 1912–1919

    Article  Google Scholar 

  115. Shahrezaei V, Cao A, Delaney KR (2006) Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. J Neurosci 26:13240–13249

    Article  PubMed  CAS  Google Scholar 

  116. Gilmanov IR, Samigullin DV, Vyskocil F, Nikolsky EE, Bukharaeva EA (2008) Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. J Comput Neurosci 25:296–307

    Article  PubMed  Google Scholar 

  117. Modchang C, Nadkarni S, Bartol TM, Triampo W, Sejnowski TJ, Levine H, Rappel WJ (2010) A comparison of deterministic and stochastic simulations of neuronal vesicle release models. Phys Biol 7:026008

    Article  PubMed  CAS  Google Scholar 

  118. Nadkarni S, Bartol TM, Sejnowski TJ, Levine H (2010) Modelling vesicular release at ­hippocampal synapses. PLoS Comput Biol 6:e1000983

    Article  PubMed  CAS  Google Scholar 

  119. Gil A, González-Vélez V (2010) Exocytotic dynamics and calcium cooperativity effects in the calyx of Held synapse: a modelling study. J Comput Neurosci 28:65–76

    Article  PubMed  Google Scholar 

  120. Franks KM, Sejnowski TJ (2002) Complexity of calcium signaling in synaptic spines. Bioessays 24:1130–1144

    Article  PubMed  CAS  Google Scholar 

  121. Keller DX, Franks KM, Bartol TM Jr, Sejnowski TJ (2008) Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 3:e2045

    Article  PubMed  CAS  Google Scholar 

  122. Bortolozzi M, Lelli A, Mammano F (2008) Calcium microdomains at presynaptic active zones of vertebrate hair cells unmasked by stochastic deconvolution. Cell Calcium 44:158–168

    Article  PubMed  CAS  Google Scholar 

  123. Kuba K, Takeshita S (1981) Simulation of intracellular Ca2+ oscillation in a sympathetic neurone. J Theor Biol 93:1009–1031

    Article  PubMed  CAS  Google Scholar 

  124. Friel DD (1995) [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophys J 68:1752–1766

    Article  PubMed  CAS  Google Scholar 

  125. Hua SY, Liu C, Lu FM, Nohmi M, Kuba K (2000) Modes of propagation of Ca2+-induced Ca2+ release in bullfrog sympathetic ganglion cells. Cell Calcium 27:195–204

    Article  PubMed  CAS  Google Scholar 

  126. McDonough SI, Cseresnyés Z, Schneider MF (2000) Origin sites of calcium release and calcium oscillations in frog sympathetic neurons. J Neurosci 20:9059–9070

    PubMed  CAS  Google Scholar 

  127. Falcke M, Huerta R, Rabinovich MI, Abarbanel HD, Elson RC, Selverston AI (2000) Modeling observed chaotic oscillations in bursting neurons: the role of calcium dynamics and IP3. Biol Cybern 82:517–527

    Article  PubMed  CAS  Google Scholar 

  128. Varona P, Torres JJ, Huerta R, Abarbanel HD, Rabinovich MI (2001) Regularization mechanisms of spiking–bursting neurons. Neural Netw 14:865–875

    Article  PubMed  CAS  Google Scholar 

  129. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  130. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  PubMed  CAS  Google Scholar 

  131. Blumenfeld H, Zablow L, Sabatini B (1992) Evaluation of cellular mechanisms for modulation of calcium transients using a mathematical model of fura-2 Ca2+ imaging in Aplysia sensory neurons. Biophys J 63:1146–1164

    Article  PubMed  CAS  Google Scholar 

  132. Nowycky MC, Pinter MJ (1993) Time course of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64:77–91

    Article  PubMed  CAS  Google Scholar 

  133. Marengo FD, Monck JR (2000) Development and dissipation of Ca2+ gradients in adrenal chromaffin cells. Biophys J 79:1800–1820

    Article  PubMed  CAS  Google Scholar 

  134. Sinha SR, Wu LG, Saggau P (1997) Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. Biophys J 72:637–651

    Article  PubMed  CAS  Google Scholar 

  135. Gabso M, Neher E, Spira ME (1997) Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18:473–481

    Article  PubMed  CAS  Google Scholar 

  136. Coatesworth W, Bolsover S (2008) Calcium signal transmission in chick sensory neurones is diffusion based. Cell Calcium 43:236–249

    Article  PubMed  CAS  Google Scholar 

  137. Hernández-Cruz A, Escobar AL, Jiménez N (1997) Ca2+-induced Ca2+ release phenomena in mammalian sympathetic neurons are critically dependent on the rate of rise of trigger Ca2+. J Gen Physiol 109:147–167

    Article  PubMed  Google Scholar 

  138. Rusakov DA, Saitow F, Lehre KP, Konishi S (2005) Modulation of presynaptic Ca2+ entry by AMPA receptors at individual GABAergic synapses in the cerebellum. J Neurosci 25: 4930–4940

    Article  PubMed  CAS  Google Scholar 

  139. Markram H, Roth A, Helmchen F (1998) Competitive calcium binding: implications for ­dendritic calcium signaling. J Comput Neurosci 5:331–348

    Article  PubMed  CAS  Google Scholar 

  140. Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of ­dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551:13–32

    Article  PubMed  CAS  Google Scholar 

  141. Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J (2007) Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. J Physiol 581:619–629

    Article  PubMed  CAS  Google Scholar 

  142. Schmidt H, Eilers J (2009) Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins. J Comput Neurosci 27:229–243

    Article  PubMed  Google Scholar 

  143. Holthoff K, Tsay D, Yuste R (2002) Calcium dynamics of spines depend on their dendritic location. Neuron 33:425–437

    Article  PubMed  CAS  Google Scholar 

  144. Hernjak N, Slepchenko BM, Fernald K, Fink CC, Fortin D, Moraru II, Watras J, Loew LM (2005) Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J 89:3790–3806

    Article  PubMed  CAS  Google Scholar 

  145. Canepari M, Vogt KE (2008) Dendritic spike saturation of endogenous calcium buffer and induction of postsynaptic cerebellar LTP. PLoS One 3:e4011

    Article  PubMed  CAS  Google Scholar 

  146. Gold JI, Bear MF (1994) A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc Natl Acad Sci USA 91:3941–3945

    Article  PubMed  CAS  Google Scholar 

  147. Schiegg A, Gerstner W, Ritz R, van Hemmen JL (1995) Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. J Neurophysiol 74:1046–1055

    PubMed  CAS  Google Scholar 

  148. Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc Natl Acad Sci USA 87:6718–6722

    Article  PubMed  CAS  Google Scholar 

  149. Holmes WR, Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. J Neurophysiol 63:1148–1168

    PubMed  CAS  Google Scholar 

  150. Volfovsky N, Parnas H, Segal M, Korkotian E (1999) Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J Neurophysiol 82:450–462

    PubMed  CAS  Google Scholar 

  151. Cornelisse LN, van Elburg RA, Meredith RM, Yuste R, Mansvelder HD (2007) High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity. PLoS One 2:e1073

    Article  PubMed  CAS  Google Scholar 

  152. Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950–961

    Article  PubMed  CAS  Google Scholar 

  153. Achard P, De Schutter E (2008) Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models. Front Comput Neurosci 2:8

    Article  PubMed  Google Scholar 

  154. De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models. In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT, Cambridge, pp 211–250

    Google Scholar 

  155. Albrecht MA, Colegrove SL, Hongpaisan J, Pivovarova NB, Andrews SB, Friel DD (2001) Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+]i during weak depolarization. J Gen Physiol 118:83–110

    Article  PubMed  CAS  Google Scholar 

  156. Anwar H, Hong S, De Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum Epub ahead of print

    Google Scholar 

  157. Friel DD, Chiel HJ (2008) Calcium dynamics: analyzing the Ca2+ regulatory network in intact cells. Trends Neurosci 31:8–19

    Article  PubMed  CAS  Google Scholar 

  158. Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    Article  PubMed  CAS  Google Scholar 

  159. Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051

    Article  PubMed  CAS  Google Scholar 

  160. Faas GC, Schwaller B, Vergara JL, Mody I (2007) Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol 5:e311

    Article  PubMed  CAS  Google Scholar 

  161. Eberhard M, Erne P (1994) Calcium and magnesium binding to rat parvalbumin. Eur J Biochem 222:21–26

    Article  PubMed  CAS  Google Scholar 

  162. Schmidt H, Schwaller B, Eilers J (2005) Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Proc Natl Acad Sci USA 102:5850–5855

    Article  PubMed  CAS  Google Scholar 

  163. Schmidt H, Brown EB, Schwaller B, Eilers J (2003) Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after ­photobleaching. Biophys J 84:2599–2608

    Article  PubMed  CAS  Google Scholar 

  164. Kosaka T, Kosaka K, Nakayama T, Hunziker W, Heizmann CW (1993) Axons and axon ­terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling. Exp Brain Res 93:483–491

    Article  PubMed  CAS  Google Scholar 

  165. Schmidt H, Arendt O, Eilers J (2010) Diffusion and extrusion shape standing calcium ­gradients during ongoing parallel fiber activity in dendrites of Purkinje neurons Cerebellum Epub ahead of print

    Google Scholar 

  166. Xu T, Naraghi M, Kang H, Neher E (1997) Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J 73:532–545

    Article  PubMed  CAS  Google Scholar 

  167. Maeda H, Ellis-Davies GC, Ito K, Miyashita Y, Kasai H (1999) Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron 24:989–1002

    Article  PubMed  CAS  Google Scholar 

  168. Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff D (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411

    Article  PubMed  CAS  Google Scholar 

  169. Baylor SM, Chandler WK, Marshall MW (1983) Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients. J Physiol 344:625–666

    PubMed  CAS  Google Scholar 

  170. Kovacs L, Rios E, Schneider MF (1983) Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye. J Physiol 343:161–196

    PubMed  CAS  Google Scholar 

  171. Melzer W, Rios E, Schneider MF (1987) A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. Biophys J 51:849–863

    Article  PubMed  CAS  Google Scholar 

  172. Schuhmeier RP, Melzer W (2004) Voltage-dependent Ca2+ fluxes in skeletal myotubes determined using a removal model analysis. J Gen Physiol 123:33–51

    Article  PubMed  CAS  Google Scholar 

  173. Sipido KR, Wier WG (1991) Flux of Ca2+ across the sarcoplasmic reticulum of guinea-pig cardiac cells during excitation-contraction coupling. J Physiol 435:605–630

    PubMed  CAS  Google Scholar 

  174. Hongpaisan J, Pivovarova NB, Colegrove SL, Leapman RD, Friel DD, Andrews SB (2001) Multiple modes of calcium-induced calcium release in sympathetic neurons II: a [Ca2+]i- and location-dependent transition from endoplasmic reticulum Ca2+ accumulation to net release Ca2+ release. J Gen Physiol 118:101–112

    Article  PubMed  CAS  Google Scholar 

  175. Colegrove SL, Albrecht MA, Friel DD (2000) Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+] i elevations in sympathetic neurons. J Gen Physiol 115:351–370

    Article  PubMed  CAS  Google Scholar 

  176. Colegrove SL, Albrecht MA, Friel DD (2000) Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization-evoked [Ca2+] i elevations. J Gen Physiol 115:371–388

    Article  PubMed  CAS  Google Scholar 

  177. Albrecht MA, Colegrove SL, Friel DD (2002) Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release. J Gen Physiol 119:211–233

    Article  PubMed  CAS  Google Scholar 

  178. Higgins ER, Goel P, Puglisi JL, Bers DM, Cannell M, Sneyd J (2007) Modelling calcium microdomains using homogenisation. J Theor Biol 247:623–644

    Article  PubMed  CAS  Google Scholar 

  179. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  PubMed  CAS  Google Scholar 

  180. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351

    Article  PubMed  CAS  Google Scholar 

  181. Goldberg JH, Tamas G, Aronov D, Yuste R (2003) Calcium microdomains in aspiny ­dendrites. Neuron 40:807–821

    Article  PubMed  CAS  Google Scholar 

  182. Soler-Llavina GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized ­signaling in cerebellar stellate cells. Nat Neurosci 9:798–806

    Article  PubMed  CAS  Google Scholar 

  183. Saftenku EE (2009) Computational study of non-homogeneous distribution of Ca2+ handling systems in cerebellar granule cells. J Theor Biol 257:228–244

    Article  PubMed  CAS  Google Scholar 

  184. Saftenku EE (2010) Models of calcium dynamics in cerebellar granule cells. Cerebellum Epub ahead of print

    Google Scholar 

  185. Fink CC, Slepchenko B, Moraru II, Schaff J, Watras J, Loew LM (1999) Morphological control of inositol-1,4,5-trisphosphate-dependent signals. J Cell Biol 147:929–936

    Article  PubMed  CAS  Google Scholar 

  186. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA, Neuro ML (2010) A language for describing data driven models of neurons and networks with a high degree of biological data. PLoS Comput Biol 6:e1000815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ukrainian grant SFFR F 46.2/001 to ES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena É. Saftenku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saftenku, E.É., Friel, D.D. (2012). Combined Computational and Experimental Approaches to Understanding the Ca2+ Regulatory Network in Neurons. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_26

Download citation

Publish with us

Policies and ethics